```
lomememosonvesem
ITM. Cauty Ittyol forumain) with sunth
```



```
    Ct }\varepsilon->0,\mathrm{ we gett }\int\beta->2\piif(a
```



```
    In loody, wegy.fere ot
    -pmblem on
    Given }\Omega~c\mp@subsup{c}{|}{\},f\in\mp@subsup{c}{}{\circ}(\Omega),\mathrm{ solve
    ml: Lav be a bumbell domain in © , fec'(\Omega)
    Nambealm, \Omegaest
```



```
tLon u\in\mp@subsup{C}{}{\prime}(\Omega)\mathrm{ , and 京立}=f,|||\mp@subsup{|}{\infty}{}\leqslantc|f\mp@subsup{|}{\infty}{}
for smececonsontc}c>0
Renark: |||||= =sp|p|||
A.: We first extady f to the undle plane © by
    let f(z)=0 寸 z }\ddagger\Omega\mathrm{ ,
    Then (1) con wewtiten as)
As fec(n) }=>\mathrm{ uccin)
```



```
    4.4<\Omega. Hf whet
```



```
    m(z)=\frac{1}{2mim}\mp@subsup{\int}{C}{{\frac{(\pi-4)f}{s-z}}d\xi|d\xi
    then }u=\mp@subsup{u}{1}{}+\mp@subsup{u}{2}{}\mathrm{ , both }\mp@subsup{c}{}{\prime}\mathrm{ in }v\mathrm{ . No
    (1-4)fv\equiv0
```



```
    and is C',}=>\frac{\partial/h}{\partial\overline{z}
```



```
    Bym1, we heme.
    In puticular, 立立(a)=f(a)
A N \Omega is bumed, \existslorg R RO, st. fov \forallZ\in\Omega
#for yz\in\Omega
    *z)
    lem in c" with cmanat supprt
```



```
        the vimon suypfj; is culd, the ruport of f,
```



```
    unique utc[k< (<) s.t
        (0)u=f
        (2) supy is compact
```



```
As}\mp@subsup{f}{1}{}\in\mp@subsup{c}{}{k}(\mp@subsup{c}{}{n})=>ut\mp@subsup{c}{}{k}(\mp@subsup{c}{}{n})\mathrm{ .
```



```
*)
```



```
Then if j=z,\cdots,n,we have 
    =\frac{1}{2i\pi}}\mp@subsup{\int}{c}{\frac{\alpha}{d}
    By Cachyy Integal formule, }
        the aboue= 和 }|,\mp@subsup{z}{1}{\prime},\mp@subsup{z}{3}{\prime},\ldots,\mp@subsup{z}{n}{\prime
This proes ju=f
Let \Omegao te the unboundel congment of }\mp@subsup{C}{}{n}-K.\mp@subsup{I}{n}{
partialar, we here f}\mp@subsup{f}{\equiv}{\prime}=0\textrm{m}\mp@subsup{\Omega}{0}{\prime,}\mp@subsup{\forall}{j}{\prime
Thus }\tilde{\sigma}=0,\mathrm{ , this moplies }u\inH|(\mp@subsup{\Omega}{0}{}
Len Iz| is sfficiertyly lage, then
```



```
    By the comectednoss of }\mp@subsup{\Omega}{0}{}=>u\equiv0\mathrm{ on }\Omega\mathrm{ .
    By the comectel位㫙 喀我位0
```



```
    Then }\overline{\partial}(u-\hat{u})=0\mathrm{ thus u-र्रि}\inH(\mp@subsup{\mathbb{C}}{n}{n}
    By(z),u(z)=\tilde{u}(z)=0\mathrm{ when }|z|\mathrm{ is lage. Hence}u=\tilde{u}\mathrm{ on (an}
Thm 3: (Hartog's extension thm)
    Let n>1,\Omega<\mathbb{C}}\mathrm{ be a domain. Let }K\mathrm{ be a compant
subset of \Omega. Assume }\Omega-k\mathrm{ is comnected, then every f}\inH(\Omega-K
    can be extended holomuphicelly to }
Pf:LLE f\inH(\Omega-K). pick a neighoromoll V of K, s.t }K\subsetV\subsetc
        Then \exists\varphi\in\mp@subsup{c}{}{\infty}(C\mp@subsup{\mathbb{C}}{}{n})\mathrm{ , s.t }\varphi\mp@subsup{|}{V}{}\equiv1 and K}\mp@subsup{K}{0}{}:=\operatorname{supp}\varphic
        we define }\mp@subsup{u}{0}{}=(1-\varphi)f\mathrm{ . First }\mp@subsup{u}{0}{}\mathrm{ is wel-defined on }\Omega-
        Secondly}\mp@subsup{u}{0}{}\mathrm{ is well-defined in V as 1- }\equiv0\mathrm{ and thus }\mp@subsup{u}{0}{}\equiv0\mathrm{ in }
        Thus }\mp@subsup{u}{0}{}\in\mp@subsup{c}{}{\infty}(\Omega)\mathrm{ . The idea is to find }u\mathrm{ such that
            h : = u _ { 0 } + u \text { gives the required extension. For that,}
        e will need }\partialu=g\mathrm{ , where }g=-j\mp@subsup{u}{0}{}\mathrm{ is a (0,1) from
        First }g\in\mp@subsup{C}{a0|}{\infty}(\Omega
    Seradly }1-\varphi\equiv1\mathrm{ on }\Omega-\mp@subsup{K}{0}{}\mathrm{ , thus g三0 on }\Omega-\mp@subsup{k}{0}{
    Thus we can extends }g\mathrm{ to }\mp@subsup{\mathbb{C}}{}{n}\mathrm{ by defthn }g(z)\equiv0\mathrm{ if }z\not\in
    In this way, we make }g\in\mp@subsup{C}{[0,1)}{\infty}(\mp@subsup{\mathbb{C}}{}{n})\mathrm{ with compurt support in Ko
    Then by thm 2,\existsu\in\mp@subsup{c}{}{\infty}(\mp@subsup{\mathbb{C}}{}{n})\mathrm{ satifying}
        (1) }\overline{\partial}u=
        (2) suppu is compact. In particular, u\equiv0 on
        the unbounded component \mp@subsup{\Omega}{0}{}\mathrm{ of }\mp@subsup{\mathbb{C}}{}{n}-\mp@subsup{K}{0}{}
        the unbounded component
        (1) }h\in\mp@subsup{c}{}{\infty}(\Omega
        (2) \tilde{h}=0\mathrm{ on }\Omega\mathrm{ , thus }h\inH(\Omega)
        (3) Note von n(\Omega-\mp@subsup{k}{0}{})\not=\phi.=>\existsG\subset\Omega-\mp@subsup{k}{0}{}\subset\Omega-K s.t
            u=oon G, thus h=\mp@subsup{u}{0}{}\mathrm{ on }G
        But on }\Omega-\mp@subsup{k}{0}{},\mp@subsup{u}{0}{}=(1-\varphi)f=f=>h=f\mathrm{ on }
        But on }\Omega-k0,uo=(1-),\mp@code{N comected, and h\inH(\Omega-k)=>h\equivf on \Omega-k
```

