Lecture 10

Plan: § 4.5 The superposition principle

Consider: \(ay'' + by' + cy = f(x) \)

Last time: find "a particular soln"
 "some soln"

Today: find "all" the solns to the above D.E

Thm 1. (Superposition Principle)

Let \(y_{p,1} \) be a particular solution to the D.E

\[ay'' + by' + cy = f_1(x) \]

and \(y_{p,2} \) be a particular solution to the D.E

\[ay'' + by' + cy = f_2(x) \]

Then for any constants \(k_1 \) and \(k_2 \), the function \(k_1 y_{p,1} + k_2 y_{p,2} \) is a particular soln to the D.E.
\[ay'' + by' + cy = k_1 f_1(x) + k_2 f_2(x) \]

E.g.:

1. Find a particular soln to

\[y'' - y = 1 \]

2. Find a particular soln to

\[y'' - y = x^2 \]

3. Find a particular soln to

\[y'' - y = 2 - x^2 \]

A:

1. \[\text{RHS} = 1 = 1 \cdot x^0 \cdot e^0 \cdot x \]

\[\Rightarrow \sum_{m=0}^{\infty} r=0 \]
Consider \(ay'' + by' + cy = C_0 x^m e^{rx} \)

(I) If \(r \) is not a root of the char. eqn

\[a\lambda^2 + b\lambda + c = 0 \]

then use the test function

\[y = (A_m x^m + A_{m-1} x^{m-1} + \ldots + A_1 x + A_0) e^{rx} \]

Note the char. eqn is \(\lambda^2 - 1 = 0 \)

\(r = 0 \) is not a root of the char. eqn.
Thus we use the test function

\[y = A_0 e^{0 \cdot x} = A_0 \]

Then \(\text{LHS} = y'' - y = -A_0 \)

Note \(\text{RHS} = 1 \)

\(\Rightarrow \) we need \(-A_0 = 1\)

\(\Rightarrow \) \(A_0 = -1 \)

Hence \(y_{p,1} = -1 \) is a particular solution to

\[y'' - y = 1 \]
(2) RHS = $x^2 = 1 \cdot x^2 \cdot e^{0 \cdot x}$

$\Rightarrow \begin{cases} m = 2 \\ r = 0 \end{cases}$

Again note the char. eqn is

$\lambda^2 - 1 = 0$

and $r = 0$ is NOT a root.

\Rightarrow we use the test function $y = (A_2 x^2 + A_1 x + A_0) e^{0 \cdot x}$

plug into $y'' - y = x^2$

$\Rightarrow LHS \begin{array}{c} \quad 2A_2 - (A_2 x^2 + A_1 x + A_0) = X^2 \\ \overbrace{y''}^{y} \end{array}$

$\Rightarrow -A_2 x^2 - A_1 x + (2A_2 - A_0) = X^2$

Compare the two sides:
\(x^2 \text{- term: } -A_2 x^2 = x^2 \)

\(x \text{- term: } -A_1 x = 0 \cdot x \)

\(\text{Constant-term: } 2A_2 - A_0 = 0 \)

\[\Rightarrow \begin{cases} -A_2 = 1 \\ -A_1 = 0 \\ 2A_2 - A_0 = 0 \end{cases} \Rightarrow \begin{cases} A_2 = -1 \\ A_1 = 0 \\ A_0 = -2 \end{cases} \]

\[\Rightarrow y_{p,2} = -x^2 - 2 \text{ is a particular soln to } y'' - y = x^2 \]

By (1), \(y_{p,1} = -1 \) is a particular soln to \(y'' - y = 1 \)

By (2), \(y_{p,2} = -x^2 - 2 \) is a particular soln to \(y'' - y = x^2 \)

By Thm 1,
"$k_1y_{p,1} + k_2y_{p,2}$ is a particular soln to $y'' - y = k_1 \cdot 1 + k_2 \cdot x^2$

In particular, let $k_1 = 2$, $k_2 = -1$

$$\Rightarrow \quad y = \left[2y_{p,1} - y_{p,2} \right] = 2 \cdot (-1) - (-x^2 - 2) = x^2$$

is a particular soln to

$$y'' - y = 2 - x^2$$

A very often used case of Thm 1 is $k_1 = 1$ and $k_2 = 1$. That is:

Corollary:
If $y_{p,1}$ is a particular soln to

$$ay'' + by' + cy = f_1(x)$$

and $y_{p,2}$ is a particular soln to
\[ay'' + by' + cy = f_2(x) \]

then \(y_{p,1} + y_{p,2} \) is a particular soln to
\[ay'' + by' + cy = f_1(x) + f_2(x) \].

Q: What does the above Corollary say if \(f_1 = f \), \(f_2 = 0 \).

A: Assume \(y_p \) is a particular soln to
\[ay'' + by' + cy = f(x) \]. (1)

Recall we know how to find general solns to
\[ay'' + by' + cy = 0 \] (2)

(\text{Assume } y_1, y_2 \text{ are two linearly independent solns to (2). Then the general solns to (2): } C_1 y_1 + C_2 y_2)
Then \(y_p + (C_1y_1 + C_2y_2) \) is also a soln to
\[
ay'' + by' + cy = f(x) + 0 = f(x) \tag{1}
\]

Q: Are there any other solns to (1)?
A: No! \(y_p + C_1y_1 + C_2y_2 \) gives all possible solns to (1)!

Thm: Suppose \(y_p \) is a particular soln to
\[
ay'' + by' + cy = f(x). \tag{1}
\]
Suppose \(y_1, y_2 \) are two linearly independent solns to
\[
ay'' + by' + cy = 0. \tag{2}
\]
Then the general solutions to (1) are (meaning “all solutions”)

\[y_p + C_1 y_1 + C_2 y_2, \quad C_1, C_2 \in \mathbb{R} \]

Idea of proof:

Let \(y_0 \) be any other solution to (1) (than \(y_p \)). \[ay_0 + by_0' + cy_0 = f(x) \]

We want to show:

\[y_0 = y_p + C_1 y_1 + C_2 y_2 \]

for some \(C_1, C_2 \in \mathbb{R} \).

Claim: \((y_0 - y_p) \) is a solution to (2).

Why? Check \(y_0 - y_p \) satisfies (2).
\[a(y_0 - y_p)'' + b(y_0 - y_p)' + c(y_0 - y_p) \]

\[= \left(ay_0'' + by_0' + cy_0 \right) - \left(ay_p'' + by_p' + cy_p \right) \]

\[= 0 = \text{RHS of (2)} \]

Hence \(y_0 - y_p \) is a soln of (2).

But we know every soln of (2) can be written as \(c_1 y_1 + c_2 y_2 \), \(c_1, c_2 \in \mathbb{R} \)

\[\Rightarrow \quad y_0 - y_p = c_1 y_1 + c_2 y_2 \]

\[\Rightarrow \quad y_o = y_p + c_1 y_1 + c_2 y_2 \]

Defn: \("ay'' + by' + cy = 0" \) is called the associated homogeneous D.E of \("ay'' + by' + cy = f(x)" \).
Algorithm to find the general solns (that is, all solns) to
\[ay'' + by' + cy = f(x) \] (1)

Step 1: Find the general solns to the associated homogeneous D.E
\[ay'' + by' + cy = 0 \]
Call the solns \(y_h = C_1y_1 + C_2y_2 \)

Step 2: Find a particular soln. to (1)
How? We can use Lecture 9 "undetermined coeff. method"
(next lecture will discuss another method)
Call the soln \(y_p \)
Step 3. Add up solutions in step 1, 2

\[y_p + c_1 y_1 + c_2 y_2, \quad c_1, c_2 \in \mathbb{R} \]

E.g.: ① Find the general solutions to

\[y'' - y = 2 - x^2 \quad (3) \]

② Solve the I.V.P

\[\begin{cases} y'' - y = 2 - x^2 \\ y(0) = 1, \ y'(0) = 0 \end{cases} \]

A: ① We follow the algorithm:

Step 1: Solve the associated homogeneous D.E.

\[y'' - y = 0 \]
The char. eqn. \(\lambda^2 - 1 = 0 \)

\(\Rightarrow \quad \lambda_1 = 1, \quad \lambda_2 = -1 \)

Hence \(y_h = C_1 e^x + C_2 e^{-x} \)

Step 2: Find a part. soln. to (3).

Already did this early today!

\(y_p = x^2 \)

Step 3: Add them up

\[y = y_p + y_h \]

\[= x^2 + C_1 e^x + C_2 e^{-x} \]

This is the general solns to (3)
Recall the general solutions to (3):

\[y = x^2 + C_1 e^x + C_2 e^{-x} \]

\[y(0) = 1 \implies 1 = 0^2 + C_1 e^0 + C_2 e^{-0} \]

\[x = 0, y = 1 \implies C_1 + C_2 = 1 \quad \text{(1)} \]

Note \(y' = 2x + C_1 e^x - C_2 e^{-x} \)

\[y'(0) = 0 \implies 0 = 2 \cdot 0 + C_1 e^0 - C_2 e^{-0} \]

\[x = 0, y' = 0 \implies C_1 - C_2 = 0 \quad \text{(2)} \]

\[\implies \begin{cases} C_1 = \frac{1}{2} \\ C_2 = \frac{1}{2} \end{cases} \]

The solution to I.V.P is

\[y = x^2 + \frac{1}{2} e^x + \frac{1}{2} e^{-x} \]