Separable Differential Equations

- Formula
 \[y' = \frac{a(x)}{b(y)} \]

- Method of Solution
 - First check if \(y' = 0 \), solve for \(y \) and see if this equation is a solution
 - Then we can rearrange the equation to: \(b(y)dy = a(x)dx \) and integrate

- Example
 - Population \(P(t) \) can be described as \(P' = (k \cos t)P \). Find the solution if the initial population is 100, and \(k = 5 \)
 \[\int \frac{1}{P}dP = \int (k \cos t)dt \]
 \[P = Ce^{k \sin t} \]
 \[P = 100e^{5 \sin t} \]

Linear First-Order Equations

- Formula
 \[y' + P(x)y = Q(x) \]

- Method of Solution
 - Calculate integrating factor \(\mu(x) = e^{\int P(x)dx} \)
 - \[y = \frac{\int \mu(x)Q(x)dx + C}{\mu(x)} \]

- Example
 - Solve \(y' + 3x^2y = x^2 \) with initial condition \(y(0) = 2 \).
 \[\mu(x) = e^{x^3} \]
 \[y = \frac{\int e^{x^3}x^2dx}{e^{x^3}} \rightarrow u = x^3 \rightarrow du/3 = x^2dx \rightarrow y = \frac{\int e^udu}{3e^{x^3}} = \frac{1}{3} + \frac{c}{3e^{x^3}} \]
 \[-2 = \frac{1}{3} + \frac{c}{3e^0} = \frac{1}{3} + \frac{c}{3} \rightarrow c = 5 \]

Exact Equations

- Formula
 \[M(x, y) + N(x, y)\frac{dy}{dx} = 0 \]

- We must either show \(\int M(x, y)dx = \int N(x, y)dy = F(x, y) \) or
\[\frac{\partial}{\partial y} M(x, y) = \frac{\partial}{\partial x} N(x, y) = \frac{\partial^2 F(x, y)}{\partial x \partial y} \]

- **Method of Solution**
 - Integrate \(M \) and \(N \) in terms of \(x \) and \(y \), respectively, and solve for \(F \).
 - \(F(x, y) + c = 0 \) is an implicit solution

- **Example**
 - \(M = (x + y)^2; \quad N = (2xy + x^2 + y^2) \)
 - \(\int M \, dx = \frac{(x + y)^3}{3} + g(y) = \frac{x^3}{3} + xy^2 + \frac{y^3}{3} + g(y) \)
 - \(\int N \, dy = xy^2 + x^2y + \frac{y^3}{3} + h(x) \)
 - \(h(x) = \frac{x^3}{3} + c, \quad g(y) = c \)
 - \(F(x, y) = \frac{(x + y)^3}{3} + c = 0 \)
 - \(c = -\frac{8}{3} \)

- **Special Integrating Factors**
 - **Formula:**
 - \(M(x, y) + N(x, y) y' = 0 \)
 - We must either show:
 - *Case 1:* \(\frac{M_y - N_x}{N} \) is solely a function of \(x \), or
 - *Case 2:* \(\frac{N_x - M_y}{M} \) is solely a function of \(y \)
 - **Method of solution:**
 - Multiply both sides of equation by integrating factor \(\mu(x) = e^{\int \frac{M_y - N_x}{N} \, dx} \) (Case 1) or \(\mu(y) = e^{\int \frac{N_x - M_y}{M} \, dy} \) (Case 2)
 - The equation is now exact and we can solve it as described previously
 - **Example:**
 - Solve \(x + (x^2y + 4y)y' = 0, \quad y(4) = 0 \)
 - \(M = x, \quad N = x^2y + 4y \rightarrow M_y = 0, \quad N_x = 2xy \)
 - \(\frac{M_y - N_x}{N} = \frac{-2x}{(x^2 + 4)} \cdot \frac{N_x - M_y}{M} = 2y \)
 - Multiply by \(\mu(y) = e^{y^2} \) on both sides, so new equation is \(xe^{y^2} + (x^2y + 4y)e^{y^2} y' = 0 \)
 - \(M_{\text{exact}} = xe^{y^2}, \quad N_{\text{exact}} = (x^2 + 4)ye^{y^2} \)
\[
\int x e^{y^2} \, dx = \frac{x^2 e^{y^2}}{2} + g(y)
\]

\[
- \int (x^2 + 4) y e^{y^2} \, dy \rightarrow u = y^2 \rightarrow \frac{du}{2} = y \, dy \rightarrow \int (x^2 + 4) e^u \, du = (x^2 + 4) \frac{e^{y^2}}{2} + h(x)
\]

- \(g(y) = 2 e^{y^2} + c \), \(h(x) = c \)
- \(F(x, y) = \frac{x^2 e^{y^2}}{2} + 2 e^{y^2} + c = 0 \)
- \(c = -10 \)

Homogeneous Linear Second-Order ODEs with Constant Coefficients

- **Equation:**
 - Method of solution:
 - Assuming that this equation will have a solution of the form \(y = e^{mx} \)
 - Solve the *characteristic equation*: \(am^2 + bm + c = 0 \) using quadratic formula:
 \[
m = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
\]
 - Three cases for our solution:
 * Two real roots: general solution is \(y = c_1 e^{m_1 x} + c_2 e^{m_2 x} \)
 * One real root: general solution is \(y = c_1 e^{mx} + c_2 x e^{mx} \)
 * Imaginary roots: general solution is \(y = e^{\alpha x} [c_1 \cos \beta x + c_2 \sin \beta x] \), where \(m = \alpha \pm \beta i \)

- **Example:**
 - Solve \(3y'' + 2y' + y = 0 \), \(y(0) = 5 \), \(y'(0) = 1 \)
 - \(3m^2 + 2m + 1 = 0 \rightarrow m = \frac{-1 \pm \sqrt{2}}{3} \)
 - \(y = e^{-x/3} \left[c_1 \cos \left(\frac{\sqrt{2}}{3} x \right) + c_2 \sin \left(\frac{\sqrt{2}}{3} x \right) \right] \)
 - After taking derivative and substituting for initial conditions we get \(c_1 = 5 \), \(c_2 = 4 \sqrt{2} \)