Midterm I Practice Problems

Midterm I will cover sections 58, 60-62, 64-66, 68, 71-76, 78-83, and then pages 259-261 of section 85 . That is, the exam will cover everything taught up to the lecture of Friday, 04/19 (included).
Tips:
You need to memorize:

- Statements of Liouville's Theorem and the Fundamental Theorem of Algebra
- The following Taylor series:

$$
\begin{gathered}
\frac{1}{1-z}=\sum_{n=0}^{\infty} z^{n} ;|z|<1 ; \\
e^{z}=\sum_{n=0}^{\infty} \frac{z^{n}}{n!} ; z \in \mathbb{C} ; \\
\sin z=\sum_{n=0}^{\infty}(-1)^{n} \frac{z^{2 n+1}}{(2 n+1)!} ; z \in \mathbb{C} ; \\
\cos z=\sum_{n=0}^{\infty}(-1)^{n} \frac{z^{2 n}}{(2 n)!} ; z \in \mathbb{C} ;
\end{gathered}
$$

- Definitions of $\int_{-\infty}^{\infty} f(x) d x$ and P.V. $\int_{-\infty}^{\infty} f(x) d x$, and their differences.

1. Let f be an entire function and assume $|f(z)| \geq 2$ for all $z \in \mathbb{C}$. Prove f is constant. (Hint: Consider a new function $g=\frac{1}{f}$, and apply Liouville's theorem).
2. (1) Find the expansion of $\frac{1}{2-z}$ on $\{|z|<2\}$. Is it a Taylor series or a Laurent series?
(2). Find the expansion of $\frac{1}{2-z}$ on $\{|z|>2\}$. Is it a Taylor series or a Laurent series?
3. Let $f(z)=\frac{e^{z}}{z^{2}+1}$. Find $f^{(3)}(0)$ and $f^{(4)}(0)$.
4. In each part, for the given $f(z)$, classify the type of singularity, removable singularity, pole (if it is a pole, you need to find the order) or essential singularity, at z_{0}. And compute the residue $\operatorname{Res}_{z=z_{0}} f(z)$.
(a). $f(z)=z \cos \left(\frac{1}{z}\right)$ and $z_{0}=0$.
(b). $f(z)=\frac{\sin z}{z\left(z-\frac{\pi}{2}\right)^{2}}$ and $z_{0}=\frac{\pi}{2}$.
(c). $f(z)=\frac{e^{2 z}-1}{z^{4}}$ and $z_{0}=0$.
5. Evaluate the integral

$$
\int_{C} \frac{\sin z}{z\left(z-\frac{\pi}{2}\right)^{2}} d z
$$

when C is the circle $|z-2|=1$ with positive orientation.

