8 89. An indexied path.
E.g.
$$\int_{0}^{\infty} \frac{\sin x}{x} dx$$
.
Is the improper integral convergent?
 $f(x) = \frac{\sin x}{x}$.
 $f(x)$ is continuous on $(0, \infty)$ but undefined at $x=0$.
Note $\frac{\sin x}{x=0} \frac{\sin x}{x} = 1$.
By defining $f(0) = 1$,
 f is continuous on E_{0}, ∞).
So $x=0$ is not a problem.
 $f = \frac{1}{2} \frac{1}{2}$

$$f(z) = \frac{p/z}{2}$$

$$f(z) = \frac{p/z}{2}$$

$$f(z) = \frac{p/z}{2}$$

$$f(z) = \frac{p/z}{2}$$

$$\frac{1}{2} =$$

3.
(a)
$$\int c_{R} f(z) dz = f(z) = \frac{e^{iR}}{2}$$

For $z \in C_{R}$,
 $|z| = \frac{1}{R} \rightarrow 0$ as $R \rightarrow \infty$.
By Jordan's lemma,
 $\int c_{R} \frac{e^{iR}}{2} dz = 0$, as $R \rightarrow \infty$.
(b) $\int c_{R,r} + c_{3} \frac{e^{iR}}{2} dz = \int_{-R}^{-R} \frac{e^{iR}}{R} dx$.
(c) $\int c_{R,r} + c_{3} \frac{e^{iR}}{2} dz = \int_{-R}^{R} \frac{e^{iR}}{R} dx$.
(c) $\int c_{R,r} + c_{3} \frac{e^{iR}}{2} dz = \int_{-R}^{R} \frac{e^{iR}}{R} dx$.
(c) $\int c_{R,r} + c_{3} \frac{e^{iR}}{2} dz = \int_{-R}^{R} \frac{e^{iR}}{R} dx$.
(c) $\int c_{R,r} \frac{e^{iR}}{2} dz = \int_{-R}^{R} \frac{e^{iR}}{R} dx$.
(c) $\int c_{R,r} \frac{e^{iR}}{2} dz = \int_{-R}^{R} \frac{e^{iR}}{R} dx$.
(c) $\int c_{R,r} \frac{e^{iR}}{2} dz = \int c_{R} \frac{e^{iR}}{R} dz + \frac{1}{2r} \frac{e^{iR}}{2} dz$.
(c) $\int c_{R} \frac{e^{iR}}{R} dz = \int c_{R} \frac{1}{2} dz + \int c_{R} \frac{e^{iR}}{R} dz$.
(c) $\int c_{R} \frac{e^{iR}}{2} dz = \int c_{R} \frac{1}{2} dz + \int c_{R} \frac{e^{iR}}{R} dz$.
(c) $\int c_{R} \frac{1}{2} dz = -\int c_{R} \frac{1}{2} dz = -\int_{-R}^{R} \frac{1}{2} \frac{1}{$

In general. We have the following theorem for indensed paths.
Thu, f(m) is analysic in
$$0 < |z-x_0| < R$$
.
X. is a simple ple of f .
Cr : upper semicircle $|z-x_0| = P$. clockwise orientestion.
Then
from for f(m) dm = $-\pi i \cdot Res f(m)$.
Proof let f(m) dm = $-\pi i \cdot Res f(m)$.
Proof let f(m) dm = $-\pi i \cdot Res f(m)$.
Since X. is a simple pole of f .
the principal part of f at X. is $\frac{B}{2-X_0}$.
 $f(m) = \frac{B}{2-X_0} + \frac{f(m) - B}{2-X_0}$.
 $f(m) = \frac{B}{2-X_0} + \frac{f(m) - B}{2-X_0} + \frac{f(m) - B}{2-X_0}$.
 $f(m) = \frac{B}{2-X_0} + \frac{f(m) - B}{2-X_0} + \frac{f($

6. So $\int_{CP} f(z) dz \longrightarrow -i\pi B = -i\pi \operatorname{Res} f(z)$ as $f \to 0$ \square <u>RMK.</u> More generally, if t has a simple pole at X., then $\int_{C_{\ell}} f(z) dz \longrightarrow i \theta \operatorname{Res} f(z) \quad as \quad \ell \to 0.$ The residue of a simple pole Xo is 'equally distributed' around Xo.