§ 89. An indented path.
E.g. $\int_{0}^{\infty} \frac{\sin x}{x} d x$.

Is the improper integral convergent?

$$
f(x)=\frac{\sin x}{x}
$$

- $f(x)$ is continuous on $(0, \infty)$ but undefined at $x=0$.

Note $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$.
By defining $f(0)=1$,
f is continuous on $[0, \infty)$.
So $x=0$ is not a problem.

$$
\int_{0}^{\infty} \frac{\sin x}{x} d x=\quad A_{1}-A_{2}+A_{3}-A_{4} \cdots
$$

alternating series with $A_{j} \downarrow 0$ as $j \rightarrow \infty$. By the alternating series test, $\quad \int_{0}^{\infty} \frac{\sin x}{x} d x$ is convergent.

Now Let's evaluate $\int_{0}^{\infty} \frac{\sin x}{x} d x$.

- Recall $|\sin z| \rightarrow \infty$ as $\quad \operatorname{lm} z \rightarrow \infty$.

We need to use the trick of writing

$$
\int_{0}^{\infty} \frac{\sin x}{x} d x=\operatorname{Im} \int_{0}^{\infty} \frac{e^{i x}}{x} d x
$$

$$
f(z)=\frac{e^{i z}}{z}
$$

f has a simple pole at $z=0$.

We will let $R \rightarrow \infty$ and $\rho \rightarrow 0$.
clock wise.
(*)

$$
\int_{\Gamma_{R, \rho}} f(z) d z=\int_{C_{R}} f(z) d z+\int_{L_{2}} f(z) d z+\int_{c_{\rho}} f(z) d z+\int_{L_{1}} f(z) d z
$$

(1). $\quad \int_{i_{R}, \rho} f(z) d z=0$.

No singularity inside P_{R}, ρ.
(2.) $\quad \int_{C_{R}} f(z) d z \quad f(z)=\frac{e^{i z}}{z}$.

For $z \in C_{R}$,

$$
\left|\frac{1}{z}\right|=\frac{1}{R} \rightarrow 0 \text { as } R \rightarrow \infty .
$$

By Jordan's lemma,

$$
\int_{C_{R}} \frac{e^{i z}}{z} d z \rightarrow 0 . \quad \text { as } \quad R \rightarrow \infty .
$$

(3) $\quad \int_{[-R,-\rho]} \frac{e^{i z}}{z} d z=\int_{-R}^{-p} \frac{e^{i x}}{x} d x$.
(5) $\quad \int_{[\rho, R]} \frac{e^{i z}}{z} d z=\int_{\rho}^{R} \frac{e^{i x}}{x} d x$.
(4) $\int_{c_{p}} \frac{e^{i z}}{z} d z$.

$$
\begin{aligned}
\frac{e^{i z}}{z}= & \frac{1}{z}\left(1+i z+\frac{(i z)^{2}}{2!}+\frac{(i z)^{3}}{3!} \cdots\right) \\
= & \frac{1}{z}+\frac{i+\frac{i^{2}}{2!} z+\frac{i^{3}}{3!} z^{2}+\cdots}{\text { analytic part. }} \\
& \text { principal part. }
\end{aligned}
$$

$$
\int_{C p} \frac{e^{i z}}{z} d z=\int_{C p} \frac{1}{z} d z+\int_{c_{p}} \frac{e^{i z}-1}{z} d z \text {. }
$$

$$
\int_{c_{\rho}}^{-c_{p}} \frac{1}{z} d z=-\int_{-c_{p}} \frac{1}{z} d z=-\int_{0}^{\pi} \frac{1}{f e^{i \theta}} \rho \cdot i e^{i \theta} d \theta=-\pi i \text {. }
$$

On the other hand, $\frac{e^{i z}-1}{z}$ has a removable singularity at $z=0$.
So $\frac{e^{i z}-1}{z}$ can be extended analytically across $z=0$.
It follows that $\frac{e^{i z-1}}{z}$ is bounded on $\{|z| \leq 1\}$.
$\exists M>0 \quad$ s.t. $\quad\left|\frac{e^{i z}-1}{z}\right| \leq M$ for any $\quad|z| \leq 1$.

$$
\begin{aligned}
& \left|\int_{c \rho} \frac{e^{i z}-1}{z} d z\right| \leqslant M \cdot \pi \rho \rightarrow 0 \text { as } \rho \rightarrow 0 . \\
& \lim _{\rho \rightarrow 0} \int_{C p} \frac{e^{i z}-1}{z} d z=0 .
\end{aligned}
$$

So $\lim _{\rho \rightarrow 0} \int_{c_{l}} \frac{e^{i z}}{z} d z=-\pi i$.
(*) $\quad \int_{P_{R}, \rho} f(z) d z=\int_{C_{R}} f(z) d z+\int_{L_{2}} f(z) d z+\int_{C p} f(z) d z+\int_{L_{1}} f(z) d z$.

$$
0=\int_{c_{R}} f(z) d z+\int_{-R}^{-p} f(x) d x+\int_{c p} f(z) d z+\int_{p}^{R} f(x) d x .
$$

Let $R \rightarrow \infty$ and $l \rightarrow 0$.

$$
\begin{aligned}
0 & =\int_{-\infty}^{\infty} \frac{e^{i x}}{x} d x-\pi i . \\
\int_{-\infty}^{\infty} \frac{e^{i x}}{x} d x & =i \pi .
\end{aligned}
$$

Take the imaginary parts.

$$
\int_{-\infty}^{\infty} \frac{\sin x}{x} d x=\pi .
$$

So $\quad \int_{0}^{\infty} \frac{\sin x}{x} d x=\frac{1}{2} \pi$.

In general, we have the following theorem for indented paths.
The. $f(z)$ is andylic in $0<\left|z-x_{0}\right|<R$.
x_{0} is a simple pole of f.
C_{p} : upper semicircle $\left|z-x_{0}\right|=\varphi$. clockwise orientation.
Then

$$
\lim _{\rho \rightarrow 0} \int_{c_{\rho}} f(z) d z=-\pi i \cdot \operatorname{Res}_{\substack{z=x_{0}}} f(z) .
$$

proof. Let $B=\operatorname{Res}_{z=x_{0}} f(z)$.

Since x_{0} is a simple pole of f,
the principal part of f at $x_{\text {. }}$ is $\frac{B}{z-x_{0}}$.

$$
f(z)=\frac{\frac{B}{z-x_{0}}}{\text { principal }}+\frac{\left(f(z)-\frac{B}{z-x_{0}}\right)}{\text { analytic at } x_{0}} .
$$

$f(z)-\frac{B}{z-x_{0}}$ is analytic in $\left|z-x_{0}\right|<R$
Thus $f(z)-\frac{B}{z-x_{0}}$ is bounded in $\left|z-x_{0}\right| \leq \frac{R}{2}$.

$$
\begin{gathered}
\exists M>0 \text {, s.t. }\left|f(z)-\frac{B}{z-x_{0}}\right| \leq M \text { for }\left|z-x_{0}\right| \leq \frac{R}{2} . \\
\left|\int_{c_{\rho}}\left(f(z)-\frac{B}{z-x_{0}}\right) d z\right| \leq M \cdot \pi \rho \rightarrow 0 \text { as } \rho \rightarrow 0 . \\
\int_{c_{\rho}} \frac{B}{z-x_{0}} d z \frac{z=x_{0}+f \rho^{i \theta}}{d z=\rho i e^{i \theta}} \int_{\pi}^{0} \frac{B}{\rho e^{i \theta}} \rho i e^{i \theta} d \theta \\
=-i \int_{0}^{\pi} B d \theta=-i \pi B .
\end{gathered}
$$

So $\quad \int_{C_{\rho}} f(z) d z \rightarrow-i \pi B=-i \pi \operatorname{Res}_{\substack{z=x_{0}}} f(z)$. as $\varphi \rightarrow 0$ I

RMK. More generally, if f has a simple pole at x_{0}, then

$$
\int_{c \rho} f(z) d z \longrightarrow i \theta \underset{\substack{\text { Res } \\ z=x_{0}}}{ } f(z) \quad \text { as } \varphi \rightarrow 0 .
$$

The residue of a simple pole x_{0} is 'equally distributed' around x_{0}.

