1. $-8-8 \sqrt{3} i=16 e^{i 4 \pi / 3}$

$$
\begin{array}{r}
=16 e^{i(4 \pi / 3+2 k \pi)} \quad k=0, \pm 1, \pm 2, \ldots \\
\therefore \quad(-8-8 \sqrt{3} i)^{1 / 4}=2 e^{i\left(\pi / 3+\frac{k \pi}{2}\right)} \quad k=0,1,2,3
\end{array}
$$

Thus the three roots are $\pm(1+\sqrt{3} i)$ for $k=0,2$

$$
\pm(\sqrt{3}-i) \text { for } k=1,3
$$

2.

$$
\begin{aligned}
& -1=e^{i \pi}=e^{i(\pi+2 k \pi)} \quad k=0,1, \pm 2, \ldots \\
& \therefore(-1)^{1 / 3}=e^{i\left(\pi / 3+\frac{2 k \pi}{3}\right)} k=0,1,2
\end{aligned}
$$

\therefore The three rods are $\frac{1}{2}+\frac{\sqrt{3}}{2} i,-1, \frac{1}{2}-\frac{\sqrt{3}}{2} i$

3.

$$
\begin{array}{rlrl}
& z^{4}+4 & =0 \\
\Rightarrow \quad z^{4} & =-4 \\
\Rightarrow & z^{4} & =4 e^{i \pi}=4 e^{i(\pi+2 k \pi)} \\
\Rightarrow \quad & z & =\sqrt{2} e^{i(\pi / 4+k \pi / 2)} \\
\therefore \quad z & =1 \pm i,-1 \pm i \\
& \quad & z^{4}+4 & =(z-1-i)(z-1+i)(z+1-i)(z+1+i) \\
& =\left(z^{2}-2 z+2\right)\left(z^{2}+2 z+2\right)
\end{array}
$$

4. A

for (a) $|\omega|>3$, the set $\left\{|z-\omega|<\frac{|\omega|-3}{2}\right\} \subseteq s^{c}$
(b) $|w|<2$, the set $\left\{|z-w|<\frac{2-|w|}{2}\right\} \subseteq s^{c}$
(c) $|\omega|=2$ and any neighbourhood $\{|z-\omega|<\delta\}$,

$$
\omega+\frac{\delta \omega}{2|\omega|} \in S \quad \omega-\frac{\delta}{2} \frac{\omega}{|\omega|} \in S^{c}
$$

(d) $|\omega|=.3$ is similar to (c)
(e) for $\omega \in S \quad\left\{|z-\omega|<\frac{1}{2} \min \{|\omega|-2,3-|\omega|\}\right\} \subseteq S$
\therefore The exterior is given lo $\{\omega||\omega|>3,|\omega|<2\}$ interisen is given lu δ itself
boundary is given by $\{|z|=3\} \cup\{|z|=2\}$ thus S is open

B $S=\{|z+i|=230\{0\}$

for $\quad \omega \notin S \quad\left\{|z-\omega|<\frac{1}{2} \min \{| | \omega+i|-2|,|\omega|\}\right\} \subseteq S^{c}$
for $\omega \in S$ and $\{|z-\omega|<\delta\}$,

$$
\omega \pm \frac{g}{2} \frac{w}{|\omega|} \in S^{c} \quad \text { lat } \quad \omega \in S
$$

\therefore The interior is umpty, exterior is S^{c},
houndary is S^{\prime}.

Thus S is closed.

$$
\begin{aligned}
\text { S. } S=\left\{\operatorname{Re}\left(z^{2}\right)>0\right\} \\
\text { Let } \quad z=x+i y \\
\therefore \quad \operatorname{Re}\left(z^{2}\right)=x^{2}-y^{2}>0
\end{aligned}
$$

\therefore The douse is given by
$R_{e}\left(z^{2}\right) \geqslant 0$

