1.
$$-8-8[3i = 16e^{i4\pi/3}]$$

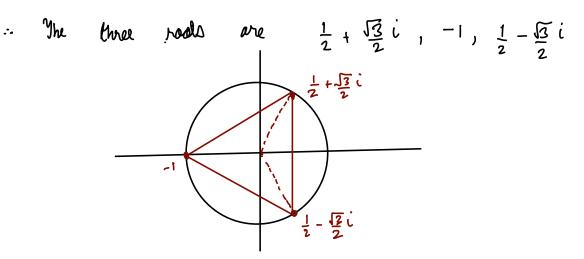
$$= 16e^{i(4\pi/3 + 2k\pi)} \qquad k = 0, \pm 1, \pm 2, ...$$

$$: (-8-853i)^{1/4} = 2e^{i(\pi/3 + \frac{k\pi}{2})} \qquad k = 0, 1, 2, 3$$
Thus the three roots are $\pm (1+5i)$ for $k = 0, \pm (52-i)$ for $k = 1, \pm (52-i)$

Thus the three roots are
$$\pm(1+\sqrt{3}i)$$
 for $k=0,2$ $\pm(\sqrt{2}-i)$ for $k=1,3$

2.
$$-1 = e^{itt} = e^{i(tt + 2ktt)}$$

 $k = 0, 11, 12, ...$
 $k = 0, 1, 12, ...$
 $k = 0, 1, 2$



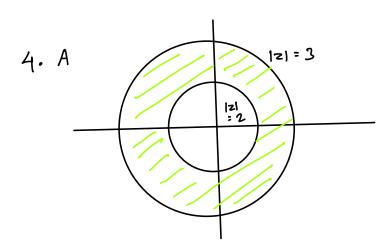
3.
$$z^{4+4} = 0$$

 $\Rightarrow z^{4} = -4$
 $\Rightarrow z^{4} = 4e^{i(\pi + 2\kappa\pi)}$
 $\Rightarrow z^{4} = 4e^{i(\pi + 2\kappa\pi)}$

$$z = 1 \pm i, -1 \pm i$$

$$z^{4+4} = (z - 1 - i)(z - 1 + i)(z + 1 - i)(z + 1 + i)$$

$$= (z^{2} - 2z + 2)(z^{2} + 2z + 2)$$



for (a)
$$|\omega| > 3$$
, the set $\{|z-\omega| < |\underline{\omega}| - 3\} \subseteq S^{C}$
(b) $|\omega| < 2$, the set $\{|z-\omega| < 2 - |\underline{\omega}|\} \subseteq S^{C}$

(c)
$$|\omega| = 2$$
 and any neighbourhood $\{|z-\omega| \geq 8\}$,

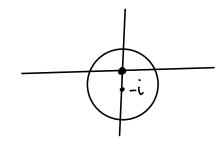
$$\omega + \underbrace{\delta \omega}_{2 |\omega|} \in S$$
 $\omega - \underbrace{\delta \omega}_{2 |\omega|} \in S^{c}$

(d)
$$|w| = .3$$
 is similar to (c)

(e) for
$$\omega \in S$$
 $\{|z-\omega| < \frac{1}{2} \min \{|\omega|-2, 3-|\omega|\}\} \subseteq S$

: The enterior is given by $\{w \mid |w| > 3, |w| < 2\}$ interior is given by $\{w \mid |w| > 3, |w| < 2\}$

houndary is given by $\{|z|:3\} \cup \{|z|=2\}$ thus S is open



for
$$w \notin S$$
 $\{|z-w| < \frac{1}{2} \min \{||w+i|-2|, |w||\}\} \subseteq S'$
for $w \in S$ and $\{|z-w| < S\}$,
 $w + \underbrace{S}_{2|iv|} \in S^{c}$ lint $w \in S$

:. The interior is empty, enterior is SC, boundary is S.

Thus S is closed.

S.
$$S = \{Re(z^2) > 0\}$$

Let $z = n + iy$
 $\therefore Re(z^2) = n^2 - y^2 > 0$

: The clasure is given by $Re(z^2) \ge 0$

