1. State Liouville’s theorem.

2. Let \(f \) be an entire function. Assume the harmonic function \(u(x, y) = \text{Re} f(z) \) satisfies that \(u(x, y) \leq 2 \) for all \((x, y)\) on the plane. Prove that \(f \) is constant.

3. (a) Find the Laurent series for the function \(f(z) = \frac{1}{z^2(1-z)} \) on \(\{ 0 < |z| < 1 \} \).

 (b) Show that when \(0 < |z-1| < 2 \),

 \[
 \frac{z}{(z-1)(z-3)} = -3 \sum_{n=0}^{\infty} \frac{(z-1)^n}{2^{n+2}} - \frac{1}{2(z-1)}.
 \]

4. Let \(f(z) = \frac{e^z}{z^2+1} \). Find \(f^{(3)}(0) \) and \(f^{(4)}(0) \).

5. (a) Compute \(\int_C \cos(z/2) \, dz \), where \(C \) is a contour from \(z = 0 \) to \(\pi + 2i \).

 (b) Compute \(\int_C \frac{z+2}{z} \, dz \), where \(C \) is the contour \(z = e^{i\theta} : -\frac{\pi}{4} \leq \theta \leq \frac{\pi}{4} \).

 (c) Compute \(\int_C \frac{z^2}{z-3} \, dz \) where \(C \) is the unit circle, positively oriented.

 (d) Compute \(\int_C \frac{1}{z^2+2z+2} \, dz \), where \(C \) is the unit circle, positively oriented.

6. (a) Compute \(\int_C \frac{z^2}{z-3} \, dz \), where \(C = \{ |z| < 4 \} \), positively oriented.

 (b) Compute \(\int_C \frac{z^2}{(z-1)^2} \, dz \), where \(C = \{ |z| < 4 \} \), positively oriented.

 (c) Compute \(\int_C \frac{z}{(z-1)(z-3)} \, dz \), where \(C = \{ |z-1| = 1 \} \), positively oriented.

 (d) Compute \(\int_C \frac{1}{4z^2+1} \, dz \), where \(C = \{ |z - \frac{1}{2}| = \frac{2}{3} \} \), positively oriented.

7. Let \(f(z) = \frac{1}{z(z-2)} \).

 (a) Find the residue of \(f \) at 0.

 (b) Find the residue of \(f \) at 1.

 (c) Find the residue of \(f \) at 2.