The β constant appeared in algebraic and complex geometry

Min Ru
University of Houston TX, USA

Nevanlinna theory: Introduction the notations

Let X be a complex projective variety and let D be an effective Cartier divisor. Let s_{D} be the canonical section of $[D]$ (i.e. $\left.\left[s_{D}=0\right]=D\right)$ and $\|\|$ be an hemitian metric, i.e. $\| s \|^{2}=\left|s_{\alpha}\right|^{2} h_{\alpha}$.

Nevanlinna theory: Introduction the notations

Let X be a complex projective variety and let D be an effective Cartier divisor. Let s_{D} be the canonical section of $[D]$ (i.e. $\left.\left[s_{D}=0\right]=D\right)$ and $\|\|$ be an hemitian metric, i.e. $\| s \|^{2}=\left|s_{\alpha}\right|^{2} h_{\alpha}$. Let $f: \mathbb{C} \rightarrow X$ be a holomorphic map. By Poincare-Lelong formula, $-d d^{c}\left[\log \left\|f^{*} s_{D}\right\|^{2}\right]=-f^{*} D+f^{*} c_{1}([D])$.

Nevanlinna theory: Introduction the notations

Let X be a complex projective variety and let D be an effective Cartier divisor. Let s_{D} be the canonical section of $[D]$ (i.e. $\left.\left[s_{D}=0\right]=D\right)$ and $\|\|$ be an hemitian metric, i.e. $\| s \|^{2}=\left|s_{\alpha}\right|^{2} h_{\alpha}$. Let $f: \mathbb{C} \rightarrow X$ be a holomorphic map. By Poincare-Lelong formula, $-d d^{c}\left[\log \left\|f^{*} s_{D}\right\|^{2}\right]=-f^{*} D+f^{*} c_{1}([D])$. Applying $\int_{1}^{t} \frac{d t}{t} \int_{|z|<t}$ and use Green-Jensen (Stoke's theorem), we get the First Main Theorem:

$$
m_{f}(r, D)+N_{f}(r, D)=T_{f, D}(r)+O(1)
$$

where $\lambda_{D}(x)=-\log \left\|s_{D}(x)\right\|=-\log$ distance from x to D (Weil function for D), $m_{f}(r, D)=\int_{0}^{2 \pi} \lambda_{D}\left(f\left(r e^{i \theta}\right)\right) \frac{d \theta}{2 \pi}$ (Approximation function). $T_{f, L}(r):=\int_{1}^{r} \frac{d t}{t} \int_{|z|<t} f^{*} c_{1}(L)$ (Height function).

Nevanlinna theory: Introduction the notations

Let X be a complex projective variety and let D be an effective Cartier divisor. Let s_{D} be the canonical section of $[D]$ (i.e. $\left.\left[s_{D}=0\right]=D\right)$ and $\|\|$ be an hemitian metric, i.e. $\| s \|^{2}=\left|s_{\alpha}\right|^{2} h_{\alpha}$. Let $f: \mathbb{C} \rightarrow X$ be a holomorphic map. By Poincare-Lelong formula, $-d d^{c}\left[\log \left\|f^{*} s_{D}\right\|^{2}\right]=-f^{*} D+f^{*} c_{1}([D])$. Applying $\int_{1}^{t} \frac{d t}{t} \int_{|z|<t}$ and use Green-Jensen (Stoke's theorem), we get the First Main Theorem:

$$
m_{f}(r, D)+N_{f}(r, D)=T_{f, D}(r)+O(1)
$$

where $\lambda_{D}(x)=-\log \left\|s_{D}(x)\right\|=-\log$ distance from x to D (Weil function for D), $m_{f}(r, D)=\int_{0}^{2 \pi} \lambda_{D}\left(f\left(r e^{i \theta}\right)\right) \frac{d \theta}{2 \pi}$ (Approximation function). $T_{f, L}(r):=\int_{1}^{r} \frac{d t}{t} \int_{|z|<t} f^{*} c_{1}(L)$ (Height function).
From First Main Theorem, $N_{f}(r, D) \leq T_{f, D}(r)$. The Second Main Theorem (in the spirit of Nevanlinna-Cartan) is to control $T_{f, D}(r)$ in terms of $N_{f}(r, D)$, or equivalently, to control $m_{f}(r, D)$ in terms of $T_{f, D}(r)$.

Nevanlinna's SMT for meromorphic functions

The Second Main Theorem(Nevanlinna, 1929). Let f be meromorphic (non-constant) on \mathbb{C} and $a_{1}, \ldots, a_{q} \in \mathbb{C} \cup\{\infty\}$ distinct. Then, for any $\epsilon>0$, $(q-2-\epsilon) T_{f}(r) \leq_{\text {exc }} \sum_{j=1}^{q} N_{f}\left(r, a_{j}\right)$, or equivalently

$$
\sum_{j=1}^{q} m_{f}\left(r, a_{j}\right) \leq_{e x c}(2+\epsilon) T_{f}(r)
$$

where $\leq_{\text {exc }}$ means that the inequality holds for $r \in[0,+\infty)$ outside a set E with finite measure.

Nevanlinna's SMT for meromorphic functions

The Second Main Theorem(Nevanlinna, 1929). Let f be meromorphic (non-constant) on \mathbb{C} and $a_{1}, \ldots, a_{q} \in \mathbb{C} \cup\{\infty\}$ distinct. Then, for any $\epsilon>0$, $(q-2-\epsilon) T_{f}(r) \leq_{\text {exc }} \sum_{j=1}^{q} N_{f}\left(r, a_{j}\right)$, or equivalently

$$
\sum_{j=1}^{q} m_{f}\left(r, a_{j}\right) \leq e x c(2+\epsilon) T_{f}(r)
$$

where $\leq_{\text {exc }}$ means that the inequality holds for $r \in[0,+\infty)$ outside a set E with finite measure. This implies the well-known little Picard theorem: If a meromorphic function f on \mathbb{C} omits three points in $\mathbb{C} \cup\{\infty\}$, then f must be constant.

Nevanlinna's SMT for meromorphic functions

The Second Main Theorem(Nevanlinna, 1929). Let f be meromorphic (non-constant) on \mathbb{C} and $a_{1}, \ldots, a_{q} \in \mathbb{C} \cup\{\infty\}$ distinct. Then, for any $\epsilon>0$, $(q-2-\epsilon) T_{f}(r) \leq_{\text {exc }} \sum_{j=1}^{q} N_{f}\left(r, a_{j}\right)$, or equivalently

$$
\sum_{j=1}^{q} m_{f}\left(r, a_{j}\right) \leq e x c(2+\epsilon) T_{f}(r)
$$

where $\leq_{\text {exc }}$ means that the inequality holds for $r \in[0,+\infty)$ outside a set E with finite measure. This implies the well-known little Picard theorem: If a meromorphic function f on \mathbb{C} omits three points in $\mathbb{C} \cup\{\infty\}$, then f must be constant.

Cartan's Theorem (1933). Let $f: \mathbb{C} \rightarrow \mathbb{P}^{n}(\mathbb{C})$ be a linearly non-degenerate holomorphic map. Let H_{1}, \ldots, H_{q} be the hyperplanes in general position on $\mathbb{P}^{n}(\mathbb{C})$. Then, for any $\epsilon>0$, $\sum_{j=1}^{q} m_{f}\left(r, H_{j}\right) \leq_{\text {exc }}(n+1+\epsilon) T_{f}(r)$.

Cartan's Theorem (1933). Let $f: \mathbb{C} \rightarrow \mathbb{P}^{n}(\mathbb{C})$ be a linearly non-degenerate holomorphic map. Let H_{1}, \ldots, H_{q} be the hyperplanes in general position on $\mathbb{P}^{n}(\mathbb{C})$. Then, for any $\epsilon>0$, $\sum_{j=1}^{q} m_{f}\left(r, H_{j}\right) \leq_{\text {exc }}(n+1+\epsilon) T_{f}(r)$.
In 2004, Ru extended the above result to hypersurfaces for $f: \mathbb{C} \rightarrow \mathbb{P}^{n}(\mathbb{C})$ with Zariski dense image.
$\sum_{j=1}^{q} \frac{1}{d_{j}} m_{f}\left(r, D_{j}\right) \leq_{\text {exc }}(n+1+\epsilon) T_{f}(r)$.

Cartan's Theorem (1933). Let $f: \mathbb{C} \rightarrow \mathbb{P}^{n}(\mathbb{C})$ be a linearly non-degenerate holomorphic map. Let H_{1}, \ldots, H_{q} be the hyperplanes in general position on $\mathbb{P}^{n}(\mathbb{C})$. Then, for any $\epsilon>0$, $\sum_{j=1}^{q} m_{f}\left(r, H_{j}\right) \leq_{\text {exc }}(n+1+\epsilon) T_{f}(r)$.
In 2004, Ru extended the above result to hypersurfaces for $f: \mathbb{C} \rightarrow \mathbb{P}^{n}(\mathbb{C})$ with Zariski dense image.
$\sum_{j=1}^{q} \frac{1}{d_{j}} m_{f}\left(r, D_{j}\right) \leq_{\text {exc }}(n+1+\epsilon) T_{f}(r)$.
Theorem (Ru, 2009). Let $f: \mathbb{C} \rightarrow X$ be holo and Zariski dense,
D_{1}, \ldots, D_{q} be divisors in general position in X. Assume that $D_{j} \sim d_{j} A$ (A being ample). Then, for $\forall \epsilon>0$,
$\sum_{j=1}^{q} \frac{1}{d_{j}} m_{f}\left(r, D_{j}\right) \leq_{\text {exc }}(\operatorname{dim} X+1+\epsilon) T_{f, A}(r)$

Theorem (Ru-Vojta, Amer. J. Math., 2020). Let X be a smooth complex projective variety and let D_{1}, \ldots, D_{q} be effective Cartier divisors in general position. Let $D=D_{1}+\cdots+D_{q}$. Let \mathscr{L} be a line sheaf on X with $h^{0}\left(\mathscr{L}^{N}\right) \geq 1$ for N big enough. Let $f: \mathbb{C} \rightarrow X$ be a holomorphic map with Zariski image. Then, for every $\epsilon>0$,

$$
\sum_{j=1}^{q} \beta_{j}\left(\mathscr{L}, D_{j}\right) m_{f}\left(r, D_{j}\right) \leq_{e x c}(1+\epsilon) T_{f, \mathscr{L}}(r)
$$

where

$$
\beta(\mathscr{L}, D)=\limsup _{N \rightarrow+\infty} \frac{\sum_{m \geq 1} \operatorname{dim} H^{0}\left(X, \mathscr{L}^{N}(-m D)\right)}{N \operatorname{dim} H^{0}\left(X, \mathscr{L}^{N}\right)}
$$

Theorem (Ru-Vojta, Amer. J. Math., 2020). Let X be a smooth complex projective variety and let D_{1}, \ldots, D_{q} be effective Cartier divisors in general position. Let $D=D_{1}+\cdots+D_{q}$. Let \mathscr{L} be a line sheaf on X with $h^{0}\left(\mathscr{L}^{N}\right) \geq 1$ for N big enough. Let $f: \mathbb{C} \rightarrow X$ be a holomorphic map with Zariski image. Then, for every $\epsilon>0$,

$$
\sum_{j=1}^{q} \beta_{j}\left(\mathscr{L}, D_{j}\right) m_{f}\left(r, D_{j}\right) \leq \operatorname{exc}(1+\epsilon) T_{f, \mathscr{L}}(r)
$$

where

$$
\beta(\mathscr{L}, D)=\limsup _{N \rightarrow+\infty} \frac{\sum_{m \geq 1} \operatorname{dim} H^{0}\left(X, \mathscr{L}^{N}(-m D)\right)}{N \operatorname{dim} H^{0}\left(X, \mathscr{L}^{N}\right)}
$$

In the case when $D_{j} \sim A$, then $\beta\left(D, D_{j}\right)=\frac{q}{n+1}$, where $D=D_{1}+\cdots+D_{q}$.

The proof is based on the following basic theorem, which is basically a reformulation of Cartan's theorem above:

The proof is based on the following basic theorem, which is basically a reformulation of Cartan's theorem above:
The Basic Theorem. Let X be a complex projective variety and let \mathcal{L} be a line sheaf on X with $\operatorname{dim} H^{0}(X, \mathcal{L}) \geq 1$. Let $s_{1}, \ldots, s_{q} \in H^{0}(X, \mathcal{L})$. Let $f: \mathbf{C} \rightarrow X$ be a holomorphic map with Zariski-dense image. Then, for any $\epsilon>0$,

$$
\int_{0}^{2 \pi} \max _{J} \sum_{j \in J} \lambda_{s_{j}}\left(f\left(r e^{i \theta}\right)\right) \frac{d \theta}{2 \pi} \leq \operatorname{exc}\left(\operatorname{dim} H^{0}(X, \mathcal{L})+\epsilon\right) T_{f, \mathcal{L}}(r)
$$

where the set J ranges over all subsets of $\{1, \ldots, q\}$ such that the sections $\left(s_{j}\right)_{j \in J}$ are linearly independent.

The proof is based on the following basic theorem, which is basically a reformulation of Cartan's theorem above:
The Basic Theorem. Let X be a complex projective variety and let \mathcal{L} be a line sheaf on X with $\operatorname{dim} H^{0}(X, \mathcal{L}) \geq 1$. Let $s_{1}, \ldots, s_{q} \in H^{0}(X, \mathcal{L})$. Let $f: \mathbf{C} \rightarrow X$ be a holomorphic map with Zariski-dense image. Then, for any $\epsilon>0$,

$$
\int_{0}^{2 \pi} \max _{J} \sum_{j \in J} \lambda_{s_{j}}\left(f\left(r e^{i \theta}\right)\right) \frac{d \theta}{2 \pi} \leq_{\operatorname{exc}}\left(\operatorname{dim} H^{0}(X, \mathcal{L})+\epsilon\right) T_{f, \mathcal{L}}(r)
$$

where the set J ranges over all subsets of $\{1, \ldots, q\}$ such that the sections $\left(s_{j}\right)_{j \in J}$ are linearly independent. Note: The $D \sim_{\mathbb{Q}} L$ is of m-basis type if $D:=\frac{1}{m N_{m}} \sum_{s \in \mathcal{B}}(s)$, where \mathcal{B} is a basis of $H^{0}\left(X, \mathcal{L}^{\otimes m}\right)$, where $N_{m}=\operatorname{dim} H^{0}\left(X, \mathcal{L}^{\otimes m}\right)$.

Theorem (Weak version of Ru-Vojta). Let X be a complex projective variety and let D_{1}, \ldots, D_{q} be effective Cartier divisors such that at most ℓ of such divisors meet at any point of X. Let \mathcal{L} be a line sheaf on X with $h^{0}\left(\mathcal{L}^{N}\right) \geq 1$ for N big enough. Let $f: \mathbf{C} \rightarrow X$ be a holomorphic map with Zariski-dense image. Then, for every $\epsilon>0, \sum_{j=1}^{q} \beta\left(\mathcal{L}, D_{j}\right) m_{f}\left(r, D_{j}\right) \leq_{\text {exc }} \ell(1+\epsilon) T_{f, \mathcal{L}}(r)$.

Theorem (Weak version of Ru-Vojta). Let X be a complex projective variety and let D_{1}, \ldots, D_{q} be effective Cartier divisors such that at most ℓ of such divisors meet at any point of X. Let \mathcal{L} be a line sheaf on X with $h^{0}\left(\mathcal{L}^{N}\right) \geq 1$ for N big enough. Let $f: \mathbf{C} \rightarrow X$ be a holomorphic map with Zariski-dense image. Then, for every $\epsilon>0, \sum_{j=1}^{q} \beta\left(\mathcal{L}, D_{j}\right) m_{f}\left(r, D_{j}\right) \leq_{\text {exc }} \ell(1+\epsilon) T_{f, \mathcal{L}}(r)$. The proof is using the Basic Theorem by choosing a a suitable m-basis of $H^{0}\left(X, \mathcal{L}^{m}\right)$ through a filtration.

Outline of the proof:

Outline of the proof:

- For each $f(z)=x \in X$, from the condition that at most ℓ of $D_{j}, 1 \leq j \leq q$, meet at x,

Outline of the proof:

- For each $f(z)=x \in X$, from the condition that at most ℓ of $D_{j}, 1 \leq j \leq q$, meet at x, we have $\sum_{j=1}^{q} \beta_{j} \lambda_{D_{j}}(x) \leq \ell \beta_{i_{0}} \lambda_{D_{i_{0}}}(x)+O(1)$.

Outline of the proof:

- For each $f(z)=x \in X$, from the condition that at most ℓ of $D_{j}, 1 \leq j \leq q$, meet at x, we have $\sum_{j=1}^{q} \beta_{j} \lambda_{D_{j}}(x) \leq \ell \beta_{i_{0}} \lambda_{D_{i_{0}}}(x)+O(1)$.
- Consider the following filtration of $H^{0}\left(X, \mathcal{L}^{N}\right)$: $H^{0}\left(X, \mathcal{L}^{N}\right) \supseteq H^{0}\left(X, \mathcal{L}^{N}\left(-D_{i_{0}}\right)\right) \supseteq \cdots \supseteq H^{0}\left(X, \mathcal{L}^{N}\left(-m D_{i_{0}}\right)\right) \supseteq \cdots$ and choose a basis $s_{1}, \cdots, s_{I} \in H^{0}\left(X, \mathcal{L}^{N}\right)$, where $I=h^{0}\left(\mathcal{L}^{N}\right)$ according to this filtration.

Outline of the proof:

- For each $f(z)=x \in X$, from the condition that at most ℓ of $D_{j}, 1 \leq j \leq q$, meet at x, we have $\sum_{j=1}^{q} \beta_{j} \lambda_{D_{j}}(x) \leq \ell \beta_{i_{0}} \lambda_{D_{i_{0}}}(x)+O(1)$.
- Consider the following filtration of $H^{0}\left(X, \mathcal{L}^{N}\right)$:
$H^{0}\left(X, \mathcal{L}^{N}\right) \supseteq H^{0}\left(X, \mathcal{L}^{N}\left(-D_{i_{0}}\right)\right) \supseteq \cdots \supseteq H^{0}\left(X, \mathcal{L}^{N}\left(-m D_{i_{0}}\right)\right) \supseteq \cdots$
and choose a basis $s_{1}, \cdots, s_{I} \in H^{0}\left(X, \mathcal{L}^{N}\right)$, where $I=h^{0}\left(\mathcal{L}^{N}\right)$ according to this filtration. Notice that for any section $s \in H^{0}\left(X, \mathcal{L}^{N}\left(-m D_{i_{0}}\right)\right)$, we have $(s) \geq m D_{i_{0}}$,

Outline of the proof:

- For each $f(z)=x \in X$, from the condition that at most ℓ of $D_{j}, 1 \leq j \leq q$, meet at x, we have $\sum_{j=1}^{q} \beta_{j} \lambda_{D_{j}}(x) \leq \ell \beta_{i_{0}} \lambda_{D_{i_{0}}}(x)+O(1)$.
- Consider the following filtration of $H^{0}\left(X, \mathcal{L}^{N}\right)$:
$H^{0}\left(X, \mathcal{L}^{N}\right) \supseteq H^{0}\left(X, \mathcal{L}^{N}\left(-D_{i_{0}}\right)\right) \supseteq \cdots \supseteq H^{0}\left(X, \mathcal{L}^{N}\left(-m D_{i_{0}}\right)\right) \supseteq \cdots$
and choose a basis $s_{1}, \cdots, s_{I} \in H^{0}\left(X, \mathcal{L}^{N}\right)$, where $I=h^{0}\left(\mathcal{L}^{N}\right)$ according to this filtration. Notice that for any section $s \in H^{0}\left(X, \mathcal{L}^{N}\left(-m D_{i_{0}}\right)\right)$, we have $(s) \geq m D_{i_{0}}$, so

$$
\begin{aligned}
\sum_{j=1}^{\prime}\left(s_{j}\right) & \geq\left(\sum_{m=0}^{\infty} m\left[h^{0}\left(\mathcal{L}^{N}\left(-m D_{i_{0}}\right)\right)-h^{0}\left(\mathcal{L}^{N}\left(-(m+1) D_{i_{0}}\right)\right)\right]\right) D_{i} \\
& =\left(\sum_{m=1}^{\infty} h^{0}\left(\mathcal{L}^{N}\left(-m D_{i_{0}}\right)\right)\right) D_{i_{0}} .
\end{aligned}
$$

Hence the m-basis

$$
\begin{gathered}
\frac{1}{N h^{0}\left(\mathcal{L}^{N}\right)} \sum_{j=1}^{h^{0}\left(\mathcal{L}^{N}\right)}\left(s_{j}\right) \\
\geq \frac{\sum_{m=1}^{\infty} h^{0}\left(\mathcal{L}^{N}\left(-m D_{i_{0}}\right)\right.}{N h^{0}\left(\mathcal{L}^{N}\right)} D_{i_{0}} .
\end{gathered}
$$

It then follows from the Basic Theorem.

Hence the m-basis

$$
\begin{gathered}
\frac{1}{N h^{0}\left(\mathcal{L}^{N}\right)} \sum_{j=1}^{h^{0}\left(\mathcal{L}^{N}\right)}\left(s_{j}\right) \\
\geq \frac{\sum_{m=1}^{\infty} h^{0}\left(\mathcal{L}^{N}\left(-m D_{i_{0}}\right)\right.}{N h^{0}\left(\mathcal{L}^{N}\right)} D_{i_{0}} .
\end{gathered}
$$

It then follows from the Basic Theorem. In summary: The proof is about estimate the order of the m-basis coming from the filtration, and then apply the basic Theroem.

Diophantine approximation

Diophantine approximation

Roth's theorem states that every irrational algebraic number α has approximation exponent equal to 2 , i.e.,

Diophantine approximation

Roth's theorem states that every irrational algebraic number α has approximation exponent equal to 2, i.e., Theorem (Roth, 1955). Let α be an algebraic number of degree ≥ 2. Then, for any given $\varepsilon>0$, we have $\left|\alpha-\frac{p}{q}\right|>\frac{1}{q^{2+\epsilon}}$ for all, but finitely many, coprime integers p and q.

Diophantine approximation

Roth's theorem states that every irrational algebraic number α has approximation exponent equal to 2, i.e.,
Theorem (Roth, 1955). Let α be an algebraic number of degree ≥ 2. Then, for any given $\varepsilon>0$, we have $\left|\alpha-\frac{p}{q}\right|>\frac{1}{q^{2+\epsilon}}$ for all, but finitely many, coprime integers p and q.
Roth's Theorem. $k=$ number field and $S=$ finite set of places on k. a_{1}, \ldots, a_{q} distinct in $\mathbb{P}^{1}(k)$. Then

$$
\sum_{j=1}^{q} \sum_{v \in S} \log ^{+} \frac{1}{\left\|x-a_{j}\right\|_{v}} \leq(2+\epsilon) h(x)
$$

holds for $\forall x \in \mathbb{P}^{1}(k)$ except for finitely many points.
Denote by

$$
m_{S}(x, a):=\sum_{v \in S} \log ^{+} \frac{1}{\|x-a\|_{v}}
$$

Then $\sum_{j=1}^{q} m_{S}\left(x, a_{j}\right) \leq_{e x c}(2+\epsilon) h(x)$.

Let L be a big line bundle on X and D an effective divisor.

Let L be a big line bundle on X and D an effective divisor. Define

$$
\beta(L, D):=\limsup _{N \rightarrow \infty} \frac{\sum_{m \geq 1} h^{0}\left(L^{N}(-m D)\right)}{N h^{0}\left(L^{N}\right)}
$$

Theorem (Ru-Vojta, 2020) [Arithmetic Part] Let X be a projective variety over a number field k, and D_{1}, \ldots, D_{q} be effective Cartier divisors intersecting properly on X. Let $S \subset M_{k}$ be a finite set of places. Then, for every $\epsilon>0$, the inequality

$$
\sum_{i=1}^{q} \beta\left(L, D_{j}\right) m_{S}\left(x, D_{j}\right) \leq(1+\epsilon) h_{L}(x)
$$

holds for all k-rational points outside a proper Zariski-closed subset of X.

The volume function

One studies the asymptotic behavior $H^{0}(X, m L)$ as $m \rightarrow \infty$.

The volume function

One studies the asymptotic behavior $H^{0}(X, m L)$ as $m \rightarrow \infty$.
Perhaps the most important important asymptotic invariant for a line bundle (divisor) L is the volume:

$$
\operatorname{Vol}(L)=\limsup _{m \rightarrow \infty} \frac{\operatorname{dim} H^{0}(X, m L)}{m^{n} / n!}
$$

or

$$
h^{0}(m L)=\frac{V o l(L)}{n!} m^{n}+O\left(m^{n-1}\right)
$$

The volume function

One studies the asymptotic behavior $H^{0}(X, m L)$ as $m \rightarrow \infty$.
Perhaps the most important important asymptotic invariant for a line bundle (divisor) L is the volume:

$$
\operatorname{Vol}(L)=\underset{m \rightarrow \infty}{\limsup } \frac{\operatorname{dim} H^{0}(X, m L)}{m^{n} / n!}
$$

or

$$
h^{0}(m L)=\frac{V o l(L)}{n!} m^{n}+O\left(m^{n-1}\right)
$$

Notice that $\operatorname{Vol}(k L)=k^{n} \operatorname{Vol}(L)$ so the volume function can be extended to \mathbb{Q}-divisors. Also note that $\operatorname{Vol}()$ depends only on the numerical class of L, so it is defined on $N S(X):=\operatorname{Div}(X) / \operatorname{Num}(X)$ and extends uniquely to a continuous function on $N S(X)_{\mathbb{R}}$. The volume function lies at the intersection of many fields of mathematics and has a variety of interesting applications (bi-rational geometry, complex geometry, number theory etc.)

Recall

$$
\beta(L, D):=\limsup _{N \rightarrow \infty} \frac{\sum_{m \geq 1} h^{0}\left(L^{N}(-m D)\right)}{N h^{0}\left(L^{N}\right)} .
$$

Recall

$$
\beta(L, D):=\limsup _{N \rightarrow \infty} \frac{\sum_{m \geq 1} h^{0}\left(L^{N}(-m D)\right)}{N h^{0}\left(L^{N}\right)} .
$$

So we can express the above constant through the notion of $\operatorname{Vol}(L)$,

$$
\beta(L, D)=\frac{1}{\operatorname{Vol}(L)} \int_{0}^{\infty} \operatorname{Vol}(L-t D) d t
$$

This can be proved by using the theory of Okounkov body.

Okounkove body

Okounkove body

Let L be a big line bindule on X. An Okounkov body $\Delta(L) \subset \mathbb{R}^{n}$ (where $n=\operatorname{dim} X$) is a compact convex set designed to study the asymptotic behavior of $H^{0}(X, m L)$, as $m \rightarrow \infty$. They have the crucial property that the Eulidean volume
$\operatorname{Vol}(\Delta)=\lim _{m \rightarrow \infty} \frac{\operatorname{dim} H^{0}(X, m L)}{m^{n}}=\frac{\operatorname{Vol}(\mathrm{L})}{n!}$.

Okounkove body

Let L be a big line bindule on X. An Okounkov body $\Delta(L) \subset \mathbb{R}^{n}$ (where $n=\operatorname{dim} X$) is a compact convex set designed to study the asymptotic behavior of $H^{0}(X, m L)$, as $m \rightarrow \infty$. They have the crucial property that the Eulidean volume $\operatorname{Vol}(\Delta)=\lim _{m \rightarrow \infty} \frac{\operatorname{dim} H^{0}(X, m L)}{m^{n}}=\frac{\operatorname{Vol}(\mathrm{L})}{n!}$. Here is the detailed description.

Okounkove body

Let L be a big line bindule on X. An Okounkov body $\Delta(L) \subset \mathbb{R}^{n}$ (where $n=\operatorname{dim} X$) is a compact convex set designed to study the asymptotic behavior of $H^{0}(X, m L)$, as $m \rightarrow \infty$. They have the crucial property that the Eulidean volume $\operatorname{Vol}(\Delta)=\lim _{m \rightarrow \infty} \frac{\operatorname{dim} H^{0}(X, m L)}{m^{n}}=\frac{\operatorname{Vol}(\mathrm{L})}{n!}$. Here is the detailed description. Fix a system $z=\left(z_{1}, \ldots, z_{n}\right)$ of parameters centered at a regular closed point ξ of X. This defines a real rank- n valuation $\operatorname{ord}_{z}: \mathcal{O}_{X, \xi} \backslash\{0\} \rightarrow \mathbb{N}^{n}$ by $f \mapsto \operatorname{ord}_{z}(f):=\min _{\text {lex }}\left\{\alpha \in \mathbb{N}^{n} \mid a_{\alpha} \neq 0\right\}$.

Okounkove body

Let L be a big line bindule on X. An Okounkov body $\Delta(L) \subset \mathbb{R}^{n}$ (where $n=\operatorname{dim} X$) is a compact convex set designed to study the asymptotic behavior of $H^{0}(X, m L)$, as $m \rightarrow \infty$. They have the crucial property that the Eulidean volume $\operatorname{Vol}(\Delta)=\lim _{m \rightarrow \infty} \frac{\operatorname{dim} H^{0}(X, m L)}{m^{n}}=\frac{\operatorname{Vol}(\mathrm{L})}{n!}$. Here is the detailed description. Fix a system $z=\left(z_{1}, \ldots, z_{n}\right)$ of parameters centered at a regular closed point ξ of X. This defines a real rank- n valuation $\operatorname{ord}_{z}: \mathcal{O}_{X, \xi} \backslash\{0\} \rightarrow \mathbb{N}^{n}$ by
$f \mapsto \operatorname{ord}_{z}(f):=\min _{\text {lex }}\left\{\alpha \in \mathbb{N}^{n} \mid a_{\alpha} \neq 0\right\}$. Let $\Gamma_{m}:=\operatorname{ord}_{z}\left(H^{0}(X, m L) \backslash\{0\}\right) \subset \mathbb{N}^{n}$, then $\# \Gamma_{m}=\operatorname{dim} H^{0}(X, m L)$.

Okounkove body

Let L be a big line bindule on X. An Okounkov body $\Delta(L) \subset \mathbb{R}^{n}$ (where $n=\operatorname{dim} X$) is a compact convex set designed to study the asymptotic behavior of $H^{0}(X, m L)$, as $m \rightarrow \infty$. They have the crucial property that the Eulidean volume $\operatorname{Vol}(\Delta)=\lim _{m \rightarrow \infty} \frac{\operatorname{dim} H^{0}(X, m L)}{m^{n}}=\frac{\operatorname{Vol}(\mathrm{L})}{n!}$. Here is the detailed description. Fix a system $z=\left(z_{1}, \ldots, z_{n}\right)$ of parameters centered at a regular closed point ξ of X. This defines a real rank- n valuation $\operatorname{ord}_{z}: \mathcal{O}_{X, \xi} \backslash\{0\} \rightarrow \mathbb{N}^{n}$ by
$f \mapsto \operatorname{ord}_{z}(f):=\min _{\text {lex }}\left\{\alpha \in \mathbb{N}^{n} \mid a_{\alpha} \neq 0\right\}$. Let $\Gamma_{m}:=\operatorname{ord}_{z}\left(H^{0}(X, m L) \backslash\{0\}\right) \subset \mathbb{N}^{n}$, then $\# \Gamma_{m}=\operatorname{dim} H^{0}(X, m L)$. Let Σ be the closed convex cone generated by $\left\{(m, \alpha) \in \mathbb{N}^{n+1} \mid \alpha \in \Gamma_{m}\right\}$. The Okounkov body of L is

$$
\Delta=\Sigma \cap\left(\{1\} \times \mathbb{R}^{n}\right) \subset \mathbb{R}^{n} .
$$

We can also construct a Okounkov body for a linear series $V_{m} \subset H^{0}(X, m L)$.

We can also construct a Okounkov body for a linear series $V_{m} \subset H^{0}(X, m L)$. Write $V_{\bullet}:=\bigoplus_{m} V_{m}$. According to lazarsfeld-Mustata (2009), textcolorbluethe Eucldean volume $\operatorname{Vol}\left(\Delta\left(V_{\bullet}\right)\right)$ is equal to $\lim _{m \rightarrow \infty} m^{-n} \operatorname{dim} V_{m}$.

We can also construct a Okounkov body for a linear series
$V_{m} \subset H^{0}(X, m L)$. Write $V_{\bullet}:=\bigoplus_{m} V_{m}$. According to lazarsfeld-Mustata (2009), textcolorbluethe Eucldean volume $\operatorname{Vol}\left(\Delta\left(V_{\bullet}\right)\right)$ is equal to $\lim _{m \rightarrow \infty} m^{-n} \operatorname{dim} V_{m}$.
The Vanishing sum: Given a filtration \mathcal{F} (for example $\left.\mathcal{F}_{m}^{t}:=H^{0}(m L-t D)\right)$, consider the jumping numbers
$0 \leq a_{m, 1} \leq \cdots \leq a_{m, N_{m}}$, defined by,
$a_{m, j}=a_{m, j}^{\mathcal{F}}=\inf \left\{t \in \mathbb{R}_{+} \mid \operatorname{codimf}_{m}^{t} \geq j\right\}$ for $1 \leq j \leq N_{m}$.

We can also construct a Okounkov body for a linear series $V_{m} \subset H^{0}(X, m L)$. Write $V_{\bullet}:=\bigoplus_{m} V_{m}$. According to lazarsfeld-Mustata (2009), textcolorbluethe Eucldean volume $\operatorname{Vol}\left(\Delta\left(V_{\bullet}\right)\right)$ is equal to $\lim _{m \rightarrow \infty} m^{-n} \operatorname{dim} V_{m}$.
The Vanishing sum: Given a filtration \mathcal{F} (for example $\left.\mathcal{F}_{m}^{t}:=H^{0}(m L-t D)\right)$, consider the jumping numbers $0 \leq a_{m, 1} \leq \cdots \leq a_{m, N_{m}}$, defined by, $a_{m, j}=a_{m, j}^{\mathcal{F}}=\inf \left\{t \in \mathbb{R}_{+} \mid \operatorname{codimf}_{m}^{t} \geq j\right\}$ for $1 \leq j \leq N_{m}$.
Define a positive (Duistermaat-Heckman) measure $\mu_{m}=\mu_{m}^{\mathfrak{F}}$ on \mathbb{R}_{+}by $\mu_{m}=\frac{1}{m^{n}} \sum_{j=1}^{N_{m}} \delta_{m^{-1} a_{m, j}}$.

We can also construct a Okounkov body for a linear series $V_{m} \subset H^{0}(X, m L)$. Write $V_{\bullet}:=\bigoplus_{m} V_{m}$. According to lazarsfeld-Mustata (2009), textcolorbluethe Eucldean volume $\operatorname{Vol}\left(\Delta\left(V_{\bullet}\right)\right)$ is equal to $\lim _{m \rightarrow \infty} m^{-n} \operatorname{dim} V_{m}$.
The Vanishing sum: Given a filtration \mathcal{F} (for example $\left.\mathcal{F}_{m}^{t}:=H^{0}(m L-t D)\right)$, consider the jumping numbers
$0 \leq a_{m, 1} \leq \cdots \leq a_{m, N_{m}}$, defined by,
$a_{m, j}=a_{m, j}^{\mathcal{F}}=\inf \left\{t \in \mathbb{R}_{+} \mid \operatorname{codimf}_{m}^{t} \geq j\right\}$ for $1 \leq j \leq N_{m}$.
Define a positive (Duistermaat-Heckman) measure $\mu_{m}=\mu_{m}^{\mathcal{F}}$ on \mathbb{R}_{+}by $\mu_{m}=\frac{1}{m^{n}} \sum_{j=1}^{N_{m}} \delta_{m^{-1} a_{m, j}}$. Then, from Boucksom-Chen (2011), we have

$$
\lim _{m \rightarrow+\infty} \mu_{m}=\mu
$$

in the weak sense of measures on \mathbb{R}_{+}, where $\mu=\left(G_{\mathcal{F}}\right)_{*} \lambda$, $G_{\mathcal{F}}: \Delta\left(V_{\bullet}\right) \rightarrow[-\infty,+\infty), G_{\mathcal{F}}(x):=\sup \left\{t \in \mathbb{R}, x \in \Delta\left(V_{\bullet}^{t}\right)\right\}$.

K-stablility

The notion of the K-stability of Fano varieties is an algebro-geometric stability condition originally motivated by studies of Kähler metrics.

K-stablility

The notion of the K-stability of Fano varieties is an algebro-geometric stability condition originally motivated by studies of Kähler metrics. Indeed, as expected, when the base field is the complex number field, it is recently established that the existence of positive scalar curvature Kähler-Einstein metrics, i.e., Kähler metrics with constant Ricci curvature, is actually equivalent to the algebro-geometric condition "K-stability", by the works of Tian, Donaldson, and Chen-Donaldson-Sun. This equivalence had been known before as the Yau-Tian-Donaldson conjecture (for the case of Fano varieties).

K-stablility

The notion of the K-stability of Fano varieties is an algebro-geometric stability condition originally motivated by studies of Kähler metrics. Indeed, as expected, when the base field is the complex number field, it is recently established that the existence of positive scalar curvature Kähler-Einstein metrics, i.e., Kähler metrics with constant Ricci curvature, is actually equivalent to the algebro-geometric condition "K-stability", by the works of Tian, Donaldson, and Chen-Donaldson-Sun. This equivalence had been known before as the Yau-Tian-Donaldson conjecture (for the case of Fano varieties). An important problem in algebraic geometry is to find a simple criterion to test the K-stability of the variety X.

In 2015, Fujita showed that if (Fano) X is K-(semi) stable, then $\beta\left(-K_{X}, D\right)<1$ (resp. $\left.\beta\left(-K_{X}, D\right) \leq 1\right)$ for any nonzero effective divisors on X.

In 2015, Fujita showed that if (Fano) X is K-(semi) stable, then $\beta\left(-K_{X}, D\right)<1$ (resp. $\beta\left(-K_{X}, D\right) \leq 1$) for any nonzero effective divisors on X. After the Annals paper (2014) by C. Xu and C. Li entitled "Special test configuration and K-stablity of Fano varieties", Fujita and C. Li independently proved that it is indeed an equivalence condition if one goes to the birational model, i.e. The \mathbb{Q}-fano varietie X is K-(semi) stable if and only if $\frac{A_{X}(E)}{\beta\left(-K_{X}, E\right)}>1$ for any prime divisors E over X (i.e. E is a prime divisor on a birational model $\pi: \tilde{X} \rightarrow X$), where $A_{X}(E):=1+\operatorname{ord}_{E}\left(K_{Y / X}\right)$ and is called the log discrepancy.

In 2015, Fujita showed that if (Fano) X is K-(semi) stable, then $\beta\left(-K_{X}, D\right)<1$ (resp. $\beta\left(-K_{X}, D\right) \leq 1$) for any nonzero effective divisors on X. After the Annals paper (2014) by C. Xu and C. Li entitled "Special test configuration and K-stablity of Fano varieties", Fujita and C. Li independently proved that it is indeed an equivalence condition if one goes to the birational model, i.e. The \mathbb{Q}-fano varietie X is K-(semi) stable if and only if $\frac{A_{X}(E)}{\beta\left(-K_{X}, E\right)}>1$ for any prime divisors E over X (i.e. E is a prime divisor on a birational model $\pi: \tilde{X} \rightarrow X$), where $A_{X}(E):=1+\operatorname{ord}_{E}\left(K_{Y / X}\right)$ and is called the log discrepancy. X is said to have klt singularities if $A_{X}(E)>0$ for all prime divisors over X.

In 2015, Fujita showed that if (Fano) X is K-(semi) stable, then $\beta\left(-K_{X}, D\right)<1$ (resp. $\beta\left(-K_{X}, D\right) \leq 1$) for any nonzero effective divisors on X. After the Annals paper (2014) by C. Xu and C. Li entitled "Special test configuration and K-stablity of Fano varieties", Fujita and C. Li independently proved that it is indeed an equivalence condition if one goes to the birational model, i.e. The \mathbb{Q}-fano varietie X is K-(semi) stable if and only if $\frac{A_{X}(E)}{\beta\left(-K_{X}, E\right)}>1$ for any prime divisors E over X (i.e. E is a prime divisor on a birational model $\pi: \tilde{X} \rightarrow X$), where $A_{X}(E):=1+\operatorname{ord}_{E}\left(K_{Y / X}\right)$ and is called the log discrepancy. X is said to have klt singularities if $A_{X}(E)>0$ for all prime divisors over X. We call $\delta(L)=\inf _{E} \frac{A_{X}(E)}{\beta(L, E)}$ the stability threshold. So X is K-(semi) stable iff $\delta\left(-K_{X}\right)>1$.

Blum-Jonsson used m-basis type to describe the stability threshold $\delta(L)$:

Blum-Jonsson used m-basis type to describe the stability threshold $\delta(L)$: they proved $\delta(L)=\lim \delta_{m}(L)$, where $\delta_{m}(L):=\inf \left\{\operatorname{lct}(D) \mid D \sim_{\mathbb{Q}} L\right.$ of m-basis type $\}$. (through m-basis). Algebraic geometry definition of "log canonical threshold":

$$
\operatorname{lct}(D)=\min _{E} \frac{A_{X}(E)}{\operatorname{ord}_{E}(D)}
$$

where the minimal is taken over all primes E over X.

The log canonical threshold through singular metric

Tian in 1987 introduced $\alpha(L)$ the log canonical threshold of L as follows: Let $h=e^{-\phi}$ be a singular metric with $\Theta_{L, h} \geq 0$, where $\Theta_{L, h}=\frac{\sqrt{-1}}{\pi} \partial \bar{\partial} \log \phi$. Define $c_{p}(h)=\sup \left\{c \mid e^{-2 c \phi}\right.$ is locally integrable at $p\}$. Define, for $p \in X, \alpha_{p}(L)=\inf _{h: \Theta_{L, h} \geq 0} c_{p}(h)$ and $\alpha(L)=\inf _{p \in X} \alpha_{p}(L)$.

The log canonical threshold through singular metric

Tian in 1987 introduced $\alpha(L)$ the log canonical threshold of L as follows: Let $h=e^{-\phi}$ be a singular metric with $\Theta_{L, h} \geq 0$, where $\Theta_{L, h}=\frac{\sqrt{-1}}{\pi} \partial \bar{\partial} \log \phi$. Define $c_{p}(h)=\sup \left\{c \mid e^{-2 c \phi}\right.$ is locally integrable at $p\}$. Define, for $p \in X, \alpha_{p}(L)=\inf _{h: \Theta_{L, h} \geq 0} c_{p}(h)$ and $\alpha(L)=\inf _{p \in X} \alpha_{p}(L)$. Tian proved that if $\alpha\left(-K_{X}\right)>\frac{n}{n+1}$, then X is K-stable.

The log canonical threshold through singular metric

Tian in 1987 introduced $\alpha(L)$ the log canonical threshold of L as follows: Let $h=e^{-\phi}$ be a singular metric with $\Theta_{L, h} \geq 0$, where $\Theta_{L, h}=\frac{\sqrt{-1}}{\pi} \partial \bar{\partial} \log \phi$. Define $c_{p}(h)=\sup \left\{c \mid e^{-2 c \phi}\right.$ is locally integrable at $p\}$. Define, for $p \in X, \alpha_{p}(L)=\inf _{h: \Theta_{L, h} \geq 0} c_{p}(h)$ and $\alpha(L)=\inf _{p \in X} \alpha_{p}(L)$. Tian proved that if $\alpha\left(-K_{X}\right)>\frac{n}{n+1}$, then X is K-stable. Let D be an effective Cartier divisor, then the canonical section s_{D} of $[D]$ gives a singular metric on $[D]$ with $\phi:=\log \left|s_{D}\right|$. We denote $\operatorname{lct} t_{p}(D):=c_{p}(h)$ and $\operatorname{lct}(D):=\inf _{p \in X} \operatorname{lct}_{p}(D)$ with such metric.

The log canonical threshold through singular metric

Tian in 1987 introduced $\alpha(L)$ the log canonical threshold of L as follows: Let $h=e^{-\phi}$ be a singular metric with $\Theta_{L, h} \geq 0$, where $\Theta_{L, h}=\frac{\sqrt{-1}}{\pi} \partial \bar{\partial} \log \phi$. Define $c_{p}(h)=\sup \left\{c \mid e^{-2 c \phi}\right.$ is locally integrable at $p\}$. Define, for $p \in X, \alpha_{p}(L)=\inf _{h: \Theta_{L, h} \geq 0} c_{p}(h)$ and $\alpha(L)=\inf _{p \in X} \alpha_{p}(L)$. Tian proved that if $\alpha\left(-K_{X}\right)>\frac{n}{n+1}$, then X is K-stable. Let D be an effective Cartier divisor, then the canonical section s_{D} of $[D]$ gives a singular metric on $[D]$ with $\phi:=\log \left|s_{D}\right|$. We denote $\operatorname{Ict} t_{p}(D):=c_{p}(h)$ and $\operatorname{lct}(D):=\inf _{p \in X} \operatorname{lct}_{p}(D)$ with such metric. According to Demailly,

$$
\alpha(L)=\inf \left\{\operatorname{lct}(D) \mid D \text { is effective, } D \sim_{\mathbb{Q}} L\right\} .
$$

The log canonical threshold through singular metric

Tian in 1987 introduced $\alpha(L)$ the log canonical threshold of L as follows: Let $h=e^{-\phi}$ be a singular metric with $\Theta_{L, h} \geq 0$, where $\Theta_{L, h}=\frac{\sqrt{-1}}{\pi} \partial \bar{\partial} \log \phi$. Define $c_{p}(h)=\sup \left\{c \mid e^{-2 c \phi}\right.$ is locally integrable at $p\}$. Define, for $p \in X, \alpha_{p}(L)=\inf _{h: \Theta_{L, h} \geq 0} c_{p}(h)$ and $\alpha(L)=\inf _{p \in X} \alpha_{p}(L)$. Tian proved that if $\alpha\left(-K_{X}\right)>\frac{n}{n+1}$, then X is K-stable. Let D be an effective Cartier divisor, then the canonical section s_{D} of $[D]$ gives a singular metric on $[D]$ with $\phi:=\log \left|s_{D}\right|$. We denote $\operatorname{lct} t_{p}(D):=c_{p}(h)$ and $\operatorname{lct}(D):=\inf _{p \in X} \operatorname{lct}_{p}(D)$ with such metric. According to Demailly,

$$
\alpha(L)=\inf \left\{\operatorname{lct}(D) \mid D \text { is effective, } D \sim_{\mathbb{Q}} L\right\}
$$

Use the fact that, for $\phi=\log |f|, \quad e^{-2 c \phi}=\frac{1}{|f|^{2 c}}$,

The log canonical threshold through singular metric

Tian in 1987 introduced $\alpha(L)$ the log canonical threshold of L as follows: Let $h=e^{-\phi}$ be a singular metric with $\Theta_{L, h} \geq 0$, where $\Theta_{L, h}=\frac{\sqrt{-1}}{\pi} \partial \bar{\partial} \log \phi$. Define $c_{p}(h)=\sup \left\{c \mid e^{-2 c \phi}\right.$ is locally integrable at $p\}$. Define, for $p \in X, \alpha_{p}(L)=\inf _{h: \Theta_{L, h} \geq 0} c_{p}(h)$ and $\alpha(L)=\inf _{p \in X} \alpha_{p}(L)$. Tian proved that if $\alpha\left(-K_{X}\right)>\frac{n}{n+1}$, then X is K-stable. Let D be an effective Cartier divisor, then the canonical section s_{D} of $[D]$ gives a singular metric on $[D]$ with $\phi:=\log \left|s_{D}\right|$. We denote $/ c t_{p}(D):=c_{p}(h)$ and $\operatorname{lct}(D):=\inf _{p \in X} \operatorname{lct}_{p}(D)$ with such metric. According to Demailly,

$$
\alpha(L)=\inf \left\{\operatorname{lct}(D) \mid D \text { is effective, } D \sim_{\mathbb{Q}} L\right\}
$$

Use the fact that, for $\phi=\log |f|, \quad e^{-2 c \phi}=\frac{1}{|f|^{2 c}}$, and the fact that $\int \frac{1}{|z|^{22 \lambda}}<\infty$ iff $\lambda a-1<0$, i.e. $\lambda<\frac{1}{a}$,

The log canonical threshold through singular metric

Tian in 1987 introduced $\alpha(L)$ the log canonical threshold of L as follows: Let $h=e^{-\phi}$ be a singular metric with $\Theta_{L, h} \geq 0$, where $\Theta_{L, h}=\frac{\sqrt{-1}}{\pi} \partial \bar{\partial} \log \phi$. Define $c_{p}(h)=\sup \left\{c \mid e^{-2 c \phi}\right.$ is locally integrable at $p\}$. Define, for $p \in X, \alpha_{p}(L)=\inf _{h: \Theta_{L, h} \geq 0} c_{p}(h)$ and $\alpha(L)=\inf _{p \in X} \alpha_{p}(L)$. Tian proved that if $\alpha\left(-K_{X}\right)>\frac{n}{n+1}$, then X is K-stable. Let D be an effective Cartier divisor, then the canonical section s_{D} of $[D]$ gives a singular metric on $[D]$ with $\phi:=\log \left|s_{D}\right|$. We denote $/ c t_{p}(D):=c_{p}(h)$ and $\operatorname{lct}(D):=\inf _{p \in X} \operatorname{lct}_{p}(D)$ with such metric. According to Demailly,

$$
\alpha(L)=\inf \left\{\operatorname{lct}(D) \mid D \text { is effective, } D \sim_{\mathbb{Q}} L\right\}
$$

Use the fact that, for $\phi=\log |f|, \quad e^{-2 c \phi}=\frac{1}{|f|^{2 c}}$, and the fact that $\int \frac{1}{|z|^{02 \lambda}}<\infty$ iff $\lambda a-1<0$, i.e. $\lambda<\frac{1}{a}$, this links with the (algebraic geometry) definition for $\operatorname{Ict}(D)$.

The log canonical threshold through singular metric

Tian in 1987 introduced $\alpha(L)$ the log canonical threshold of L as follows: Let $h=e^{-\phi}$ be a singular metric with $\Theta_{L, h} \geq 0$, where $\Theta_{L, h}=\frac{\sqrt{-1}}{\pi} \partial \bar{\partial} \log \phi$. Define $c_{p}(h)=\sup \left\{c \mid e^{-2 c \phi}\right.$ is locally integrable at $p\}$. Define, for $p \in X, \alpha_{p}(L)=\inf _{h: \Theta_{L, h} \geq 0} c_{p}(h)$ and $\alpha(L)=\inf _{p \in X} \alpha_{p}(L)$. Tian proved that if $\alpha\left(-K_{X}\right)>\frac{n}{n+1}$, then X is K-stable. Let D be an effective Cartier divisor, then the canonical section s_{D} of $[D]$ gives a singular metric on $[D]$ with $\phi:=\log \left|s_{D}\right|$. We denote $/ c t_{p}(D):=c_{p}(h)$ and $\operatorname{lct}(D):=\inf _{p \in X} \operatorname{lct}_{p}(D)$ with such metric. According to Demailly,

$$
\alpha(L)=\inf \left\{\operatorname{lct}(D) \mid D \text { is effective, } D \sim_{\mathbb{Q}} L\right\}
$$

Use the fact that, for $\phi=\log |f|, \quad e^{-2 c \phi}=\frac{1}{|f|^{2 c}}$, and the fact that $\int \frac{1}{|z|^{02 \lambda}}<\infty$ iff $\lambda a-1<0$, i.e. $\lambda<\frac{1}{a}$, this links with the (algebraic geometry) definition for $\operatorname{Ict}(D)$.

Proof of Blum-Jonsson's result

To see Blum-Jonsson's result: $\lim _{m \rightarrow \infty} \delta_{m}(L)=\delta(L)$, where $\delta(L)=\inf _{E} \frac{A_{X}(E)}{\beta(L, E)}, \delta_{m}(L):=\inf \left\{\operatorname{lct}(D) \mid D \sim_{\mathbb{Q}} L\right.$ of m-basis type $\}$, $\operatorname{lct}(D)=\min _{E} \frac{A_{X}(E)}{\operatorname{ord}_{E}(D)}$,

Proof of Blum-Jonsson's result

To see Blum-Jonsson's result: $\lim _{m \rightarrow \infty} \delta_{m}(L)=\delta(L)$, where $\delta(L)=\inf _{E} \frac{A_{X}(E)}{\beta(L, E)}, \delta_{m}(L):=\inf \left\{\operatorname{lct}(D) \mid D \sim_{\mathbb{Q}} L\right.$ of m-basis type $\}$, $\operatorname{lct}(D)=\min _{E} \frac{A_{X}(E)}{\operatorname{ord}_{E}(D)}$, we need to choose an m-basis. The m-basis comes from the filtration $\mathcal{F}_{m}^{t}:=H^{0}(X, m L-t E), t \geq 0$, of $H^{0}(X, m L)$.

The choice of m-basis

Let E be an effective Cartier divisor. The m-basis comes from the filtration $\mathcal{F}_{m}^{t}=H^{0}(X, m L-t E), t \geq 0$ of $H^{0}(X, m L)$. The m-basis is $D:=\frac{1}{m N_{m}} \sum_{s \in B}(s)$. Notice that, for any $s \in W_{t}:=H^{0}(X, m L-t E), \operatorname{ord}_{E}(s) \geq t$, so $\operatorname{ord}_{E}(D)=$

$$
\begin{gathered}
\frac{1}{m N_{m}} \sum_{s \in B} \operatorname{ord}_{E}(s) \geq \frac{1}{m N_{m}}\left(\sum_{t=0}^{\infty} t\left(\operatorname{dim} W_{t}-\operatorname{dim} W_{t+1}\right)\right) \\
\quad=\frac{1}{m N_{m}}\left(\sum_{t=1}^{\infty} \operatorname{dim} W_{t}\right) \rightarrow \beta(L, E) \text { as } m \rightarrow \infty
\end{gathered}
$$

Indeed: $\beta_{m}(L, E):=\inf \left\{\operatorname{lct}(D) \mid D \sim_{\mathbb{Q}} L\right.$ of m-basis type $\}$
$=\max _{s_{j}} \frac{1}{N_{m}} \sum_{j=1}^{N_{m}} \operatorname{ord}_{E}\left(s_{j}\right)$,

The choice of m-basis

Let E be an effective Cartier divisor. The m-basis comes from the filtration $\mathcal{F}_{m}^{t}=H^{0}(X, m L-t E), t \geq 0$ of $H^{0}(X, m L)$. The m-basis is $D:=\frac{1}{m N_{m}} \sum_{s \in B}(s)$. Notice that, for any $s \in W_{t}:=H^{0}(X, m L-t E), \operatorname{ord}_{E}(s) \geq t$, so $\operatorname{ord}_{E}(D)=$

$$
\begin{gathered}
\frac{1}{m N_{m}} \sum_{s \in B} \operatorname{ord}_{E}(s) \geq \frac{1}{m N_{m}}\left(\sum_{t=0}^{\infty} t\left(\operatorname{dim} W_{t}-\operatorname{dim} W_{t+1}\right)\right) \\
\quad=\frac{1}{m N_{m}}\left(\sum_{t=1}^{\infty} \operatorname{dim} W_{t}\right) \rightarrow \beta(L, E) \text { as } m \rightarrow \infty
\end{gathered}
$$

Indeed: $\beta_{m}(L, E):=\inf \left\{\operatorname{lct}(D) \mid D \sim_{\mathbb{Q}} L\right.$ of m-basis type $\}$
$=\max _{s_{j}} \frac{1}{N_{m}} \sum_{j=1}^{N_{m}} \operatorname{ord}_{E}\left(s_{j}\right)$, where the maximum is over all bases
$s_{1}, \ldots, s_{N_{m}}$ of $H^{0}(X, m L)$, so $\delta_{m}(L) \rightarrow \delta(L):=\inf _{E} \frac{A_{X}(E)}{\beta_{(}(, E)}$.

By taking $\mathcal{F}_{m}^{t}=H^{0}(X, m L-t D), t \geq 0$, we can show that, for any effective divisor $D, \delta(L) \leq \frac{1}{\beta(L, D)} \operatorname{lct}(D)$.

By taking $\mathcal{F}_{m}^{t}=H^{0}(X, m L-t D), t \geq 0$, we can show that, for any effective divisor $D, \delta(L) \leq \frac{1}{\beta(L, D)} / c t(D)$. Note: In stability part, one is concerned about the lower bound of $\delta(L)$ (in the Fano case we need $\left.\delta\left(-K_{X}\right)>1\right)$, and in Nevanlinna theory, we basically try to find the upper bound of $\delta(L)$.

By taking $\mathcal{F}_{m}^{t}=H^{0}(X, m L-t D), t \geq 0$, we can show that, for any effective divisor $D, \delta(L) \leq \frac{1}{\beta(L, D)} / c t(D)$. Note: In stability part, one is concerned about the lower bound of $\delta(L)$ (in the Fano case we need $\left.\delta\left(-K_{X}\right)>1\right)$, and in Nevanlinna theory, we basically try to find the upper bound of $\delta(L)$. So they are just opposite, although concepts and some methods are similar.

By taking $\mathcal{F}_{m}^{t}=H^{0}(X, m L-t D), t \geq 0$, we can show that, for any effective divisor $D, \delta(L) \leq \frac{1}{\beta(L, D)} / c t(D)$. Note: In stability part, one is concerned about the lower bound of $\delta(L)$ (in the Fano case we need $\left.\delta\left(-K_{X}\right)>1\right)$, and in Nevanlinna theory, we basically try to find the upper bound of $\delta(L)$. So they are just opposite, although concepts and some methods are similar. With the filtration in Ru-Vojta, we can prove that Theorem.

$$
\delta(L) \leq \frac{1}{\max _{1 \leq i \leq q} \beta\left(D_{i}, L\right)} \operatorname{lct}(D)
$$

for any divisor $D=D_{1}+\cdots+D_{q}$ with D_{1}, \ldots, D_{q} are in general position on X.

By taking $\mathcal{F}_{m}^{t}=H^{0}(X, m L-t D), t \geq 0$, we can show that, for any effective divisor $D, \delta(L) \leq \frac{1}{\beta(L, D)} / c t(D)$. Note: In stability part, one is concerned about the lower bound of $\delta(L)$ (in the Fano case we need $\left.\delta\left(-K_{X}\right)>1\right)$, and in Nevanlinna theory, we basically try to find the upper bound of $\delta(L)$. So they are just opposite, although concepts and some methods are similar. With the filtration in Ru-Vojta, we can prove that Theorem.

$$
\delta(L) \leq \frac{1}{\max _{1 \leq i \leq q} \beta\left(D_{i}, L\right)} \operatorname{lct}(D)
$$

for any divisor $D=D_{1}+\cdots+D_{q}$ with D_{1}, \ldots, D_{q} are in general position on X. Ru-Vojta theorem is just above result plus the Basic Theorem.

Three interesting constants

Let L be ample, we define

Three interesting constants

Let L be ample, we define

- Seshadri constant $\epsilon(L, D)$):

Three interesting constants

Let L be ample, we define

- Seshadri constant $\epsilon(L, D)$):

$$
\epsilon(L, D)=\sup \{\gamma \in \mathbb{Q}: L-\gamma D \text { is nef }\} .
$$

$T(L, D)=\sup \{\gamma \in \mathbb{Q}: L-\gamma D$ is effective or pseudo-effective $\}$.

- Then we have (Blum-Jonsson) $\epsilon(L, D) \leq T(L, D)$

Three interesting constants

Let L be ample, we define

- Seshadri constant $\epsilon(L, D)$):

$$
\epsilon(L, D)=\sup \{\gamma \in \mathbb{Q}: L-\gamma D \text { is nef }\} .
$$

$T(L, D)=\sup \{\gamma \in \mathbb{Q}: L-\gamma D$ is effective or pseudo-effective $\}$.

- Then we have (Blum-Jonsson) $\epsilon(L, D) \leq T(L, D)$ and $\frac{1}{n+1} T(L, D) \leq \beta(L, D) \leq T(L, D)$.

Three interesting constants

Let L be ample, we define

- Seshadri constant $\epsilon(L, D)$):

$$
\epsilon(L, D)=\sup \{\gamma \in \mathbb{Q}: L-\gamma D \text { is nef }\} .
$$

$T(L, D)=\sup \{\gamma \in \mathbb{Q}: L-\gamma D$ is effective or pseudo-effective $\}$.

- Then we have (Blum-Jonsson) $\epsilon(L, D) \leq T(L, D)$ and $\frac{1}{n+1} T(L, D) \leq \beta(L, D) \leq T(L, D)$.
- Furthermore, $\alpha(L)=\inf _{E} \frac{A(E)}{T(L, E)}$.

Three interesting constants

Let L be ample, we define

- Seshadri constant $\epsilon(L, D)$):

$$
\epsilon(L, D)=\sup \{\gamma \in \mathbb{Q}: L-\gamma D \text { is nef }\} .
$$

$T(L, D)=\sup \{\gamma \in \mathbb{Q}: L-\gamma D$ is effective or pseudo-effective $\}$.

- Then we have (Blum-Jonsson) $\epsilon(L, D) \leq T(L, D)$ and $\frac{1}{n+1} T(L, D) \leq \beta(L, D) \leq T(L, D)$.
- Furthermore, $\alpha(L)=\inf _{E} \frac{A(E)}{T(L, E)}$. This gives (B) (as above)

$$
\alpha(L) \leq \delta(L) \leq(n+1) \alpha(L)
$$

