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Nevanlinna theory: Introduction the notations

Let X be a complex projective variety and let D be an effective
Cartier divisor. Let sD be the canonical section of [D] (i.e.
[sD = 0] = D) and ‖ ‖ be an hemitian metric, i.e. ‖s‖2 = |sα|2hα.

Let f : C→ X be a holomorphic map. By Poincare-Lelong
formula, −ddc [log ‖f ∗sD‖2] = −f ∗D + f ∗c1([D]). Applying∫ t

1
dt
t

∫
|z|<t and use Green-Jensen (Stoke’s theorem), we get the

First Main Theorem:

mf (r ,D) + Nf (r ,D) = Tf ,D(r) + O(1)

where λD(x) = − log ‖sD(x)‖ =− log distance from x to D (Weil

function for D), mf (r ,D) =
∫ 2π

0 λD(f (re iθ))dθ2π (Approximation

function). Tf ,L(r) :=
∫ r

1
dt
t

∫
|z|<t f

∗c1(L) (Height function).

From First Main Theorem, Nf (r ,D) ≤ Tf ,D(r). The Second Main
Theorem (in the spirit of Nevanlinna-Cartan) is to control Tf ,D(r)
in terms of Nf (r ,D), or equivalently, to control mf (r ,D) in terms
of Tf ,D(r).
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Nevanlinna’s SMT for meromorphic functions

The Second Main Theorem(Nevanlinna, 1929). Let f be
meromorphic (non-constant) on C and a1, ..., aq ∈ C ∪ {∞}
distinct. Then, for any ε > 0,
(q − 2− ε)Tf (r) ≤exc

∑q
j=1 Nf (r , aj), or equivalently

q∑
j=1

mf (r , aj) ≤exc (2 + ε)Tf (r) ,

where ≤exc means that the inequality holds for r ∈ [0,+∞)
outside a set E with finite measure.

This implies the well-known
little Picard theorem: If a meromorphic function f on C omits
three points in C ∪ {∞}, then f must be constant.
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Cartan’s Theorem (1933). Let f : C→ Pn(C) be a linearly
non-degenerate holomorphic map. Let H1, . . . ,Hq be the
hyperplanes in general position on Pn(C). Then, for any ε > 0,∑q

j=1 mf (r ,Hj) ≤exc (n + 1 + ε)Tf (r).

In 2004, Ru extended the above result to hypersurfaces for
f : C→ Pn(C) with Zariski dense image.∑q

j=1
1
dj
mf (r ,Dj) ≤exc (n + 1 + ε)Tf (r).

Theorem (Ru, 2009). Let f : C→ X be holo and Zariski dense,
D1, . . . ,Dq be divisors in general position in X . Assume that
Dj ∼ djA (A being ample). Then, for ∀ ε > 0,
q∑

j=1

1

dj
mf (r ,Dj) ≤exc (dimX + 1 + ε)Tf ,A(r)
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Theorem (Ru-Vojta, Amer. J. Math., 2020). Let X be a smooth
complex projective variety and let D1, . . . ,Dq be effective Cartier
divisors in general position. Let D = D1 + · · ·+ Dq. Let L be a
line sheaf on X with h0(L N) ≥ 1 for N big enough. Let
f : C→ X be a holomorphic map with Zariski image. Then, for
every ε > 0,

q∑
j=1

βj(L ,Dj)mf (r ,Dj) ≤exc (1 + ε)Tf ,L (r)

where

β(L ,D) = lim sup
N→+∞

∑
m≥1 dimH0(X ,L N(−mD))

N dimH0(X ,L N)
.

In the case when Dj ∼ A, then β(D,Dj) = q
n+1 , where

D = D1 + · · ·+ Dq.
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The proof is based on the following basic theorem, which is
basically a reformulation of Cartan’s theorem above:

The Basic Theorem. Let X be a complex projective variety and let
L be a line sheaf on X with dimH0(X ,L) ≥ 1. Let
s1, . . . , sq ∈ H0(X ,L). Let f : C→ X be a holomorphic map with
Zariski-dense image. Then, for any ε > 0,∫ 2π

0
max
J

∑
j∈J

λsj (f (re iθ))
dθ

2π
≤exc (dimH0(X ,L) + ε)Tf ,L(r)

where the set J ranges over all subsets of {1, . . . , q} such that the
sections (sj)j∈J are linearly independent. Note: The D ∼Q L is of
m-basis type if D := 1

mNm

∑
s∈B(s), where B is a basis of

H0(X ,L⊗m), where Nm = dimH0(X ,L⊗m).
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Theorem (Weak version of Ru-Vojta). Let X be a complex
projective variety and let D1, . . . ,Dq be effective Cartier divisors
such that at most ` of such divisors meet at any point of X . Let L

be a line sheaf on X with h0(LN) ≥ 1 for N big enough. Let
f : C→ X be a holomorphic map with Zariski-dense image. Then,
for every ε > 0,

∑q
j=1 β(L,Dj)mf (r ,Dj) ≤exc ` (1 + ε)Tf ,L(r).

The proof is using the Basic Theorem by choosing a a suitable
m-basis of H0(X ,Lm) through a filtration.
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Outline of the proof:

For each f (z) = x ∈ X , from the condition that at most ` of
Dj , 1 ≤ j ≤ q, meet at x , we have∑q

j=1 βjλDj
(x) ≤ `βi0λDi0

(x) + O(1).

Consider the following filtration of H0(X ,LN):

H0(X ,LN) ⊇ H0(X ,LN(−Di0)) ⊇ · · · ⊇ H0(X ,LN(−mDi0)) ⊇ · · ·

and choose a basis s1, · · · , sl ∈ H0(X ,LN), where l = h0(LN)
according to this filtration. Notice that for any section
s ∈ H0(X ,LN(−mDi0)), we have (s) ≥ mDi0 , so

l∑
j=1

(sj) ≥

( ∞∑
m=0

m[h0(LN(−mDi0))− h0(LN(−(m + 1)Di0))]

)
Di0

=

( ∞∑
m=1

h0(LN(−mDi0))

)
Di0 .
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Hence the m-basis

1

Nh0(LN)

h0(LN)∑
j=1

(sj)

≥
∑∞

m=1 h
0(LN(−mDi0)

Nh0(LN)
Di0 .

It then follows from the Basic Theorem.

In summary: The proof
is about estimate the order of the m-basis coming from the
filtration, and then apply the basic Theroem.
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Diophantine approximation

Roth’s theorem states that every irrational algebraic number α
has approximation exponent equal to 2, i.e.,
Theorem (Roth, 1955). Let α be an algebraic number of

degree≥ 2. Then, for any given ε > 0, we have
∣∣∣α− p

q

∣∣∣ > 1
q2+ε for

all, but finitely many, coprime integers p and q.
Roth’s Theorem. k=number field and S=finite set of places on k .
a1, . . . , aq distinct in P1(k). Then

q∑
j=1

∑
υ∈S

log+ 1

‖x − aj‖υ
≤ (2 + ε)h(x)

holds for ∀ x ∈ P1(k) except for finitely many points.
Denote by

mS(x , a) :=
∑
υ∈S

log+ 1

‖x − a‖υ
.

Then
∑q

j=1 mS(x , aj) ≤exc (2 + ε)h(x).
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Let L be a big line bundle on X and D an effective divisor.

Define

β(L,D) := lim sup
N→∞

∑
m≥1 h

0(LN(−mD))

Nh0(LN)
.

Theorem (Ru-Vojta, 2020) [Arithmetic Part] Let X be a projective
variety over a number field k, and D1, . . . ,Dq be effective Cartier
divisors intersecting properly on X . Let S ⊂ Mk be a finite set of
places. Then, for every ε > 0, the inequality

q∑
i=1

β(L,Dj)mS(x ,Dj) ≤ (1 + ε)hL(x)

holds for all k-rational points outside a proper Zariski-closed
subset of X .
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The volume function

One studies the asymptotic behavior H0(X ,mL) as m→∞.

Perhaps the most important important asymptotic invariant for a
line bundle (divisor) L is the volume:

Vol(L) = lim sup
m→∞

dimH0(X ,mL)

mn/n!

or

h0(mL) =
Vol(L)

n!
mn + O(mn−1).

Notice that Vol(kL) = knVol(L) so the volume function can be
extended to Q-divisors. Also note that Vol( ) depends only on the
numerical class of L, so it is defined on
NS(X ) := Div(X )/Num(X ) and extends uniquely to a continuous
function on NS(X )R. The volume function lies at the intersection
of many fields of mathematics and has a variety of interesting
applications (bi-rational geometry, complex geometry, number
theory etc.)
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Recall

β(L,D) := lim sup
N→∞

∑
m≥1 h

0(LN(−mD))

Nh0(LN)
.

So we can express the above constant through the notion of
Vol(L),

β(L,D) =
1

Vol(L)

∫ ∞
0

Vol(L− tD)dt.

This can be proved by using the theory of Okounkov body.
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Okounkove body

Let L be a big line bindule on X . An Okounkov body ∆(L) ⊂ Rn

(where n = dimX ) is a compact convex set designed to study the
asymptotic behavior of H0(X ,mL), as m→∞. They have the
crucial property that the Eulidean volume

Vol(∆) = limm→∞
dimH0(X ,mL)

mn =
Vol(L)

n! . Here is the detailed
description. Fix a system z = (z1, . . . , zn) of parameters centered
at a regular closed point ξ of X . This defines a real rank-n
valuation ordz : OX ,ξ\{0} → Nn by
f 7→ ordz(f ) := minlex{α ∈ Nn | aα 6= 0}. Let
Γm := ordz

(
H0(X ,mL)\{0}

)
⊂ Nn,then #Γm = dimH0(X ,mL).

Let Σ be the closed convex cone generated by
{(m, α) ∈ Nn+1 | α ∈ Γm}. The Okounkov body of L is

∆ = Σ ∩ ({1} × Rn) ⊂ Rn.

Min Ru The β constant appeared in algebraic and complex geometry



Okounkove body

Let L be a big line bindule on X . An Okounkov body ∆(L) ⊂ Rn

(where n = dimX ) is a compact convex set designed to study the
asymptotic behavior of H0(X ,mL), as m→∞. They have the
crucial property that the Eulidean volume

Vol(∆) = limm→∞
dimH0(X ,mL)

mn =
Vol(L)

n! .

Here is the detailed
description. Fix a system z = (z1, . . . , zn) of parameters centered
at a regular closed point ξ of X . This defines a real rank-n
valuation ordz : OX ,ξ\{0} → Nn by
f 7→ ordz(f ) := minlex{α ∈ Nn | aα 6= 0}. Let
Γm := ordz

(
H0(X ,mL)\{0}

)
⊂ Nn,then #Γm = dimH0(X ,mL).

Let Σ be the closed convex cone generated by
{(m, α) ∈ Nn+1 | α ∈ Γm}. The Okounkov body of L is

∆ = Σ ∩ ({1} × Rn) ⊂ Rn.

Min Ru The β constant appeared in algebraic and complex geometry



Okounkove body

Let L be a big line bindule on X . An Okounkov body ∆(L) ⊂ Rn

(where n = dimX ) is a compact convex set designed to study the
asymptotic behavior of H0(X ,mL), as m→∞. They have the
crucial property that the Eulidean volume

Vol(∆) = limm→∞
dimH0(X ,mL)

mn =
Vol(L)

n! . Here is the detailed
description.

Fix a system z = (z1, . . . , zn) of parameters centered
at a regular closed point ξ of X . This defines a real rank-n
valuation ordz : OX ,ξ\{0} → Nn by
f 7→ ordz(f ) := minlex{α ∈ Nn | aα 6= 0}. Let
Γm := ordz

(
H0(X ,mL)\{0}

)
⊂ Nn,then #Γm = dimH0(X ,mL).

Let Σ be the closed convex cone generated by
{(m, α) ∈ Nn+1 | α ∈ Γm}. The Okounkov body of L is

∆ = Σ ∩ ({1} × Rn) ⊂ Rn.

Min Ru The β constant appeared in algebraic and complex geometry



Okounkove body

Let L be a big line bindule on X . An Okounkov body ∆(L) ⊂ Rn

(where n = dimX ) is a compact convex set designed to study the
asymptotic behavior of H0(X ,mL), as m→∞. They have the
crucial property that the Eulidean volume

Vol(∆) = limm→∞
dimH0(X ,mL)

mn =
Vol(L)

n! . Here is the detailed
description. Fix a system z = (z1, . . . , zn) of parameters centered
at a regular closed point ξ of X . This defines a real rank-n
valuation ordz : OX ,ξ\{0} → Nn by
f 7→ ordz(f ) := minlex{α ∈ Nn | aα 6= 0}.

Let
Γm := ordz

(
H0(X ,mL)\{0}

)
⊂ Nn,then #Γm = dimH0(X ,mL).

Let Σ be the closed convex cone generated by
{(m, α) ∈ Nn+1 | α ∈ Γm}. The Okounkov body of L is

∆ = Σ ∩ ({1} × Rn) ⊂ Rn.

Min Ru The β constant appeared in algebraic and complex geometry



Okounkove body

Let L be a big line bindule on X . An Okounkov body ∆(L) ⊂ Rn

(where n = dimX ) is a compact convex set designed to study the
asymptotic behavior of H0(X ,mL), as m→∞. They have the
crucial property that the Eulidean volume

Vol(∆) = limm→∞
dimH0(X ,mL)

mn =
Vol(L)

n! . Here is the detailed
description. Fix a system z = (z1, . . . , zn) of parameters centered
at a regular closed point ξ of X . This defines a real rank-n
valuation ordz : OX ,ξ\{0} → Nn by
f 7→ ordz(f ) := minlex{α ∈ Nn | aα 6= 0}. Let
Γm := ordz

(
H0(X ,mL)\{0}

)
⊂ Nn,then #Γm = dimH0(X ,mL).

Let Σ be the closed convex cone generated by
{(m, α) ∈ Nn+1 | α ∈ Γm}. The Okounkov body of L is

∆ = Σ ∩ ({1} × Rn) ⊂ Rn.

Min Ru The β constant appeared in algebraic and complex geometry



Okounkove body

Let L be a big line bindule on X . An Okounkov body ∆(L) ⊂ Rn

(where n = dimX ) is a compact convex set designed to study the
asymptotic behavior of H0(X ,mL), as m→∞. They have the
crucial property that the Eulidean volume

Vol(∆) = limm→∞
dimH0(X ,mL)

mn =
Vol(L)

n! . Here is the detailed
description. Fix a system z = (z1, . . . , zn) of parameters centered
at a regular closed point ξ of X . This defines a real rank-n
valuation ordz : OX ,ξ\{0} → Nn by
f 7→ ordz(f ) := minlex{α ∈ Nn | aα 6= 0}. Let
Γm := ordz

(
H0(X ,mL)\{0}

)
⊂ Nn,then #Γm = dimH0(X ,mL).

Let Σ be the closed convex cone generated by
{(m, α) ∈ Nn+1 | α ∈ Γm}. The Okounkov body of L is

∆ = Σ ∩ ({1} × Rn) ⊂ Rn.

Min Ru The β constant appeared in algebraic and complex geometry



We can also construct a Okounkov body for a linear series
Vm ⊂ H0(X ,mL).

Write V• :=
⊕

m Vm. According to
lazarsfeld-Mustata (2009), textcolorbluethe Eucldean volume
Vol(∆(V•)) is equal to limm→∞m−n dimVm.
The Vanishing sum: Given a filtration F (for example
Ft
m := H0(mL− tD)), consider the jumping numbers

0 ≤ am,1 ≤ · · · ≤ am,Nm , defined by,
am,j = aFm,j = inf{t ∈ R+ | codimFt

m ≥ j} for 1 ≤ j ≤ Nm.

Define a positive (Duistermaat-Heckman) measure µm = µFm on
R+ by µm = 1

mn

∑Nm
j=1 δm−1am,j . Then, from Boucksom-Chen

(2011), we have
lim

m→+∞
µm = µ

in the weak sense of measures on R+, where µ = (GF)∗λ,
GF : ∆(V•)→ [−∞,+∞), GF(x) := sup{t ∈ R, x ∈ ∆(V t

• )}.
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K-stablility

The notion of the K-stability of Fano varieties is an
algebro-geometric stability condition originally motivated by studies
of Kähler metrics.

Indeed, as expected, when the base field is the
complex number field, it is recently established that the existence
of positive scalar curvature Kähler-Einstein metrics, i.e., Kähler
metrics with constant Ricci curvature, is actually equivalent to the
algebro-geometric condition “K-stability”, by the works of Tian,
Donaldson, and Chen-Donaldson-Sun. This equivalence had been
known before as the Yau-Tian-Donaldson conjecture (for the case
of Fano varieties). An important problem in algebraic geometry is
to find a simple criterion to test the K -stability of the variety X .

Min Ru The β constant appeared in algebraic and complex geometry



K-stablility

The notion of the K-stability of Fano varieties is an
algebro-geometric stability condition originally motivated by studies
of Kähler metrics. Indeed, as expected, when the base field is the
complex number field, it is recently established that the existence
of positive scalar curvature Kähler-Einstein metrics, i.e., Kähler
metrics with constant Ricci curvature, is actually equivalent to the
algebro-geometric condition “K-stability”, by the works of Tian,
Donaldson, and Chen-Donaldson-Sun. This equivalence had been
known before as the Yau-Tian-Donaldson conjecture (for the case
of Fano varieties).

An important problem in algebraic geometry is
to find a simple criterion to test the K -stability of the variety X .

Min Ru The β constant appeared in algebraic and complex geometry



K-stablility

The notion of the K-stability of Fano varieties is an
algebro-geometric stability condition originally motivated by studies
of Kähler metrics. Indeed, as expected, when the base field is the
complex number field, it is recently established that the existence
of positive scalar curvature Kähler-Einstein metrics, i.e., Kähler
metrics with constant Ricci curvature, is actually equivalent to the
algebro-geometric condition “K-stability”, by the works of Tian,
Donaldson, and Chen-Donaldson-Sun. This equivalence had been
known before as the Yau-Tian-Donaldson conjecture (for the case
of Fano varieties). An important problem in algebraic geometry is
to find a simple criterion to test the K -stability of the variety X .

Min Ru The β constant appeared in algebraic and complex geometry



In 2015, Fujita showed that if (Fano) X is K -(semi) stable, then
β(−KX ,D) < 1 (resp. β(−KX ,D) ≤ 1) for any nonzero effective
divisors on X .

After the Annals paper (2014) by C. Xu and C. Li
entitled ”Special test configuration and K -stablity of Fano
varieties”, Fujita and C. Li independently proved that it is indeed
an equivalence condition if one goes to the birational model, i.e.
The Q-fano varietie X is K -(semi) stable if and only if

AX (E)
β(−KX ,E) > 1 for any prime divisors E over X (i.e. E is a prime

divisor on a birational model π : X̃ → X ), where
AX (E ) := 1 + ordE (KY /X ) and is called the log discrepancy. X is
said to have klt singularities if AX (E ) > 0 for all prime divisors

over X . We call δ(L) = infE
AX (E)
β(L,E) the stability threshold. So X

is K -(semi) stable iff δ(−KX ) > 1.
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Blum-Jonsson used m-basis type to describe the stability threshold
δ(L):

they proved δ(L) = lim δm(L), where
δm(L) := inf{lct(D) | D ∼Q L of m-basis type}. (through m-basis).
Algebraic geometry definition of “log canonical threshold”:

lct(D) = min
E

AX (E )

ordE (D)
,

where the minimal is taken over all primes E over X .
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The log canonical threshold through singular metric

Tian in 1987 introduced α(L) the log canonical threshold of L as
follows: Let h = e−φ be a singular metric with ΘL,h ≥ 0, where

ΘL,h =
√
−1
π ∂∂̄ log φ. Define cp(h) = sup{c | e−2cφ is locally

integrable at p }. Define, for p ∈ X , αp(L) = infh:ΘL,h≥0 cp(h) and
α(L) = infp∈X αp(L).

Tian proved that if α(−KX ) > n
n+1 , then

X is K -stable. Let D be an effective Cartier divisor, then the
canonical section sD of [D] gives a singular metric on [D] with
φ := log |sD |. We denote lctp(D) := cp(h) and
lct(D) := infp∈X lctp(D) with such metric. According to
Demailly,

α(L) = inf{lct(D) | D is effective,D ∼Q L}.

Use the fact that, for φ = log |f |, e−2cφ = 1
|f |2c , and the fact

that
∫

1
|z|a2λ <∞ iff λa− 1 < 0, i.e. λ < 1

a , this links with the

(algebraic geometry) definition for lct(D).
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Proof of Blum-Jonsson’s result

To see Blum-Jonsson’s result: limm→∞ δm(L) = δ(L), where

δ(L) = infE
AX (E)
β(L,E) , δm(L) := inf{lct(D) | D ∼Q L of m-basis type},

lct(D) = minE
AX (E)

ordE (D) ,

we need to choose an m-basis. The

m-basis comes from the filtration Ft
m := H0(X ,mL− tE ), t ≥ 0, of

H0(X ,mL).
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The choice of m-basis

Let E be an effective Cartier divisor. The m-basis comes from the
filtration Ft

m = H0(X ,mL− tE ), t ≥ 0 of H0(X ,mL). The m-basis
is D := 1

mNm

∑
s∈B(s). Notice that, for any

s ∈Wt := H0(X ,mL− tE ), ordE (s) ≥ t, so ordE (D) =

1

mNm

∑
s∈B

ordE (s) ≥ 1

mNm

( ∞∑
t=0

t(dimWt − dimWt+1)

)

=
1

mNm

( ∞∑
t=1

dimWt

)
→ β(L,E ) as m→∞.

Indeed: βm(L,E ) := inf{lct(D) | D ∼Q L of m-basis type}
= maxsj

1
Nm

∑Nm
j=1 ordE (sj),

where the maximum is over all bases

s1, . . . , sNm of H0(X ,mL), so δm(L)→ δ(L) := infE
AX (E)
β(L,E) .
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By taking Ft
m = H0(X ,mL− tD), t ≥ 0, we can show that, for any

effective divisor D, δ(L) ≤ 1
β(L,D) lct(D).

Note: In stability part,

one is concerned about the lower bound of δ(L) (in the Fano case
we need δ(−KX ) > 1), and in Nevanlinna theory, we basically try
to find the upper bound of δ(L). So they are just opposite,
although concepts and some methods are similar. With the
filtration in Ru-Vojta, we can prove that
Theorem.

δ(L) ≤ 1

max1≤i≤q β(Di , L)
lct(D),

for any divisor D = D1 + · · ·+ Dq with D1, . . . ,Dq are in general
position on X . Ru-Vojta theorem is just above result plus the
Basic Theorem.
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Three interesting constants

Let L be ample, we define

Seshadri constant ε(L,D)):

ε(L,D) = sup{γ ∈ Q : L− γD is nef}.

T (L,D) = sup{γ ∈ Q : L−γD is effective or pseudo-effective}.

Then we have (Blum-Jonsson) ε(L,D) ≤ T (L,D) and
1

n+1T (L,D) ≤ β(L,D) ≤ T (L,D).

Furthermore, α(L) = infE
A(E)

T (L,E) . This gives (B) (as above)

α(L) ≤ δ(L) ≤ (n + 1)α(L).
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