

Hermitian-Yang-Mills approach to the conjecture of Griffiths on the positivity of ample vector bundles

Jean-Pierre Demailly

Institut Fourier, Université Grenoble Alpes & Académie des Sciences de Paris

Virtual Conference on Several Complex Variables organized by Shiferaw Berhanu and Ming Xiao August 20, 2020, 09:00 EDT

J.-P. Demailly, Virtual Conference on SCV, August 20, 2020

Griffiths conjecture on the positivity of vector bundles

1/21

Ample vector bundles

Let X be a projective n-dimensional manifold and $E \to X$ a holomorphic vector bundle of rank $r \ge 1$.

Ample vector bundles

 $E \to X$ is said to be ample in the sense of Hartshorne if the associated line bundle $\mathcal{O}_{\mathbb{P}(E)}(1)$ on $\mathbb{P}(E)$ is ample, i.e. by Kodaira $\iff \exists \ C^{\infty}$ hermitian metric on $\mathcal{O}_{\mathbb{P}(E)}(1)$ with positive curvature.

This is equivalent to the existence of a a strongly pseudoconvex tubular neighborhood U of the 0-section in E^* , i.e. of a negatively curved

Finsler metric on E^* .

Geometric interpretation: U can be taken S^1 invariant $U \leadsto \bigcap_{|\lambda|=1} \lambda U$

Chern curvature tensor and positivity concepts

Chern curvature tensor

This is
$$\Theta_{E,h} = i \nabla^2_{E,h} \in C^{\infty}(\Lambda^{1,1}T_X^* \otimes \operatorname{Hom}(E,E))$$
, written $\Theta_{E,h} = i \sum_{1 \leq j,k \leq n, \, 1 \leq \lambda, \mu \leq r} c_{jk\lambda\mu} dz_j \wedge d\overline{z}_k \otimes e_{\lambda}^* \otimes e_{\mu}$

in terms of an orthonormal frame $(e_{\lambda})_{1 \leq \lambda \leq r}$ of E.

Griffiths and Nakano positivity

One looks at the associated quadratic form on $S = T_X \otimes E$

$$\widetilde{\Theta}_{E,h}(\xi \otimes v) := \langle \Theta_{E,h}(\xi, \overline{\xi}) \cdot v, v \rangle_h = \sum_{1 \leq j,k \leq n,\, 1 \leq \lambda, \mu \leq r} c_{jk\lambda\mu} \xi_j \overline{\xi}_k v_\lambda \overline{v}_\mu.$$

Then E is said to be:

- Griffiths positive (Griffiths 1969) if at any point $z \in X$ $\widetilde{\Theta}_{E,h}(\xi \otimes v) > 0$, $\forall 0 \neq \xi \in T_{X,z}$, $\forall 0 \neq v \in E_z$
- ullet Nakano positive (Nakano 1955) if at any point $z \in X$

$$\widetilde{\Theta}_{E,h}(\tau) = \sum_{1 \leq j,k \leq n, \, 1 \leq \lambda, \mu \leq r} c_{jk\lambda\mu} \tau_{j,\lambda} \overline{\tau}_{k,\mu} > 0, \quad \forall 0 \neq \tau \in T_{X,z} \otimes E_z.$$

J.-P. Demailly, Virtual Conference on SCV, August 20, 2020

Griffiths conjecture on the positivity of vector bundles

3/21

Geometric interpretation of Griffiths positivity

Griffiths positivity of E is equivalent to the existence of a strongly pseudoconvex neighborhood U' of the 0-section in E^* whose fibers are (varying) hermitian balls.

(Nakano > 0 is more restrictive than strict pseudoconvexity of U'.)

Easy and well known facts

E Nakano positive \Rightarrow *E* Griffiths positive \Rightarrow *E* ample.

In fact, E Griffiths positive $\Rightarrow \mathcal{O}_{\mathbb{P}(E)}(1)$ positive.

Dual Nakano positivity – a conjecture

Curvature tensor of the dual bundle E^*

$$\Theta_{E^*,h} = -{}^T\Theta_{E,h} = -\sum_{1 \leq j,k \leq n,\, 1 \leq \lambda, \mu \leq r} c_{jk\mu\lambda} dz_j \wedge d\overline{z}_k \otimes (e_{\lambda}^*)^* \otimes e_{\mu}^*.$$

Dual Nakano positivity

One requires

$$-\widetilde{\Theta}_{E^*,h}(\tau) = \sum_{1 \leq j,k \leq n,\, 1 \leq \lambda, \mu \leq r} c_{jk\mu\lambda} \tau_{j\lambda} \overline{\tau}_{k\mu} > 0, \quad \forall 0 \neq \tau \in T_{X,z} \otimes E_z^*.$$

Dual Nakano positivity is clearly stronger than Griffiths positivity.

Also, it is better behaved than Nakano positivity, e.g.

E dual Nakano positive

 \Rightarrow any quotient Q = E/S is also dual Nakano positive.

(Very speculative) conjecture

Is it true that E ample \Rightarrow E dual Nakano positive?

J.-P. Demailly, Virtual Conference on SCV, August 20, 2020

Griffiths conjecture on the positivity of vector bundles

5/21

Geometric interpretation of the conjecture

Basic question. Is there a (geometric, analytic) procedure that turns the strictly pseudoconvex neighborhood U into another strictly pseudoconvex U' that would be a ball bundle?

Answer is yes if $n = \dim X = 1$ (Umemura, Campana-Flenner) !!

Brief discussion around this positivity conjecture

If true, Griffiths conjecture would follow:

E ample $\Leftrightarrow E$ dual Nakano positive $\Leftrightarrow E$ Griffiths positive.

Remark

E ample $\not\Rightarrow E$ Nakano positive, in fact E Griffiths positive $\not\Rightarrow E$ Nakano positive.

For instance, $T_{\mathbb{P}^n}$ is easy shown to be ample and Griffiths positive for the Fubini-Study metric, but it is not Nakano positive. Otherwise the Nakano vanishing theorem would then yield

$$H^{n-1,n-1}(\mathbb{P}^n,\mathbb{C})=H^{n-1}(\mathbb{P}^n,\Omega^{n-1}_{\mathbb{P}^n})=H^{n-1}(\mathbb{P}^n,\mathcal{K}_{\mathbb{P}^n}\otimes\mathcal{T}_{\mathbb{P}^n})=0$$
!!!

Let us mention here that there are already known subtle relations between ampleness, Griffiths and Nakano positivity are known to hold – for instance, B. Berndtsson has proved that the ampleness of E implies the Nakano positivity of $S^m E \otimes \det E$ for every $m \in \mathbb{N}$.

J.-P. Demailly, Virtual Conference on SCV, August 20, 2020

Griffiths conjecture on the positivity of vector bundles

7/21

"Total" determinant of the curvature tensor

If the Chern curvature tensor $\Theta_{E,h}$ is dual Nakano positive, then one can introduce the $(n \times r)$ -dimensional determinant of the corresponding Hermitian quadratic form on $T_X \otimes E^*$

$$\det_{\mathcal{T}_X \otimes E^*} (\ ^T\Theta_{E,h})^{1/r} := \det(c_{jk\mu\lambda})_{(j,\lambda),(k,\mu)}^{1/r} \ \text{id} z_1 \wedge d\overline{z}_1 \wedge \ ... \ \wedge \ \text{id} z_n \wedge d\overline{z}_n.$$

This (n, n)-form does not depend on the choice of coordinates (z_j) on X, nor on the choice of the orthonormal frame (e_{λ}) on E.

Basic idea

Assigning a "matrix Monge-Ampère equation"

$$\det_{\mathcal{T}_X \otimes E^*} ({}^{\mathcal{T}}\Theta_{E,h})^{1/r} = f > 0$$

where f is a positive (n, n)-form, may enforce the dual Nakano positivity of $\Theta_{E,h}$ if that assignment is combined with a continuity technique from an initial starting point where positivity is known.

Continuity method (case of rank 1)

For r = 1 and $h = h_0 e^{-\varphi}$, we have

$$^{T}\Theta_{E,h} = \Theta_{E,h} = -i\partial\overline{\partial}\log h = \omega_{0} + i\partial\overline{\partial}\varphi,$$

and the equation reduces to a standard Monge-Ampère equation

(*)
$$(\Theta_{E,h})^n = (\omega_0 + i\partial \overline{\partial} \varphi)^n = f.$$

If f is given and independent of h, Yau's theorem guarantees the existence of a unique solution $\theta = \Theta_{E,h} > 0$, provided E is an ample line bundle and $\int_X f = c_1(E)^n$.

When the right hand side $f = f_t$ of (*) varies smoothly with respect to some parameter $t \in [0, 1]$, one then gets a smoothly varying solution

$$\Theta_{E,h_t} = \omega_0 + i\partial \overline{\partial} \varphi_t > 0,$$

and the positivity of Θ_{E,h_0} forces the positivity of Θ_{E,h_t} for all t.

J.-P. Demailly, Virtual Conference on SCV, August 20, 2020

Griffiths conjecture on the positivity of vector bundles

9/21

Undeterminacy of the equation

Assuming E to be ample of rank r > 1, the equation

$$(**) \qquad \det_{T_X \otimes E^*} ({}^T \Theta_{E,h})^{1/r} = f > 0$$

becomes underdetermined, as the real rank of the space of hermitian matrices $h=(h_{\lambda\mu})$ on E is equal to r^2 , while (**) provides only 1 scalar equation.

(Solutions might still exist, but lack uniqueness and a priori bounds.)

Conclusion

In order to recover a well determined system of equations, one needs an additional "matrix equation" of rank $(r^2 - 1)$.

Observation 1 (from the Donaldson-Uhlenbeck-Yau theorem)

Take a Hermitian metric η_0 on det E so that $\omega_0 := \Theta_{\det E, \eta_0} > 0$. If E is ω_0 -polystable, $\exists h$ Hermitian metric h on E such that

$$\omega_0^{n-1} \wedge \Theta_{E,h} = \frac{1}{r} \omega_0^n \otimes \operatorname{Id}_E$$
 (Hermite-Einstein equation, slope $\frac{1}{r}$).

J.-P. Demailly, Virtual Conference on SCV, August 20, 2020

Resulting trace free condition

Observation 2

The trace part of the above Hermite-Einstein equation is "automatic", hence the equation is equivalent to the trace free condition $\omega_0^{n-1} \wedge \Theta_{E,h}^{n} = 0,$

when decomposing any endomorphism $u \in \text{Herm}(E, E)$ as

$$u = u^{\circ} + \frac{1}{r}\operatorname{Tr}(u)\operatorname{Id}_{E} \in \operatorname{Herm}^{\circ}(E, E) \oplus \mathbb{R}\operatorname{Id}_{E}, \operatorname{tr}(u^{\circ}) = 0.$$

Observation 3

The trace free condition is a matrix equation of rank $(r^2 - 1)$!!!

Remark

In case $\dim X = n = 1$, the trace free condition means that E is projectively flat, and the Umemura proof of the Griffiths conjecture proceeds exactly in that way, using the fact that the graded pieces of the Harder-Narasimhan filtration are projectively flat.

J.-P. Demailly, Virtual Conference on SCV, August 20, 2020

Griffiths conjecture on the positivity of vector bundles

11/21

Towards a "cushioned" Hermite-Einstein equation

In general, one cannot expect E to be ω_0 -polystable, but Uhlenbeck-Yau have shown that there always exists a smooth solution q_{ε} to a certain "cushioned" Hermite-Einstein equation.

To make things more precise, let $\operatorname{Herm}(E)$ be the space of Hermitian (non necessarily positive) forms on E. Given a reference Hermitian metric $H_0 > 0$, let $\operatorname{Herm}_{H_0}(E, E)$ be the space of H_0 -Hermitian endomorphisms $u \in \operatorname{Hom}(E, E)$; denote by

 $\operatorname{Herm}(E) \xrightarrow{\simeq} \operatorname{Herm}_{H_0}(E, E), \quad q \mapsto \widetilde{q} \text{ s.t. } q(v, w) = \langle \widetilde{q}(v), w \rangle_{H_0}$ the natural isomorphism. Let also

$$\operatorname{Herm}_{H_0}^{\circ}(E,E) = \left\{ q \in \operatorname{Herm}_{H_0}(E,E) \, ; \, \operatorname{tr}(q) = 0 \right\}$$

be the subspace of "trace free" Hermitian endomorphisms.

In the sequel, we fix H_0 on E such that

$$\Theta_{\det E, \det H_0} = \omega_0 > 0.$$

A basic result from Uhlenbeck and Yau

Uhlenbeck-Yau 1986, Theorem 3.1

For every $\varepsilon > 0$, there always exists a (unique) smooth Hermitian metric q_{ε} on E such that

$$\omega_0^{n-1} \wedge \Theta_{E,q_{\varepsilon}} = \omega_0^n \otimes \left(\frac{1}{r} \operatorname{Id}_E - \varepsilon \log \widetilde{q}_{\varepsilon}\right),$$

where \tilde{q}_{ε} is computed with respect to H_0 , and $\log g$ denotes the logarithm of a positive Hermitian endomorphism g.

The reason is that the term $-\varepsilon \log \widetilde{q}_{\varepsilon}$ is a "friction term" that prevents the explosion of the a priori estimates, similarly what happens for Monge-Ampère equations $(\omega_0 + i\partial \overline{\partial} \varphi)^n = e^{\varepsilon \varphi + f} \omega_0^n$.

The above matrix equation is equivalent to prescribing det $q_{\varepsilon} = \det H_0$ and the trace free equation of rank $(r^2 - 1)$

$$\omega_0^{n-1} \wedge \Theta_{E,q_{\varepsilon}}^{\circ} = -\varepsilon \, \omega_0^n \otimes \log \widetilde{q}_{\varepsilon}.$$

J.-P. Demailly, Virtual Conference on SCV, August 20, 2020

Griffiths conjecture on the positivity of vector bundles

13/21

Search for an appropriate evolution equation

General setup

In this context, given $\alpha > 0$ large enough, it is natural to search for a time dependent family of metrics $h_t(z)$ on the fibers E_z of E, $t \in [0,1]$, satisfying a generalized Monge-Ampère equation

(D)
$$\det_{T_X \otimes E^*} \left({}^T \Theta_{E,h_t} + (1-t)\alpha \,\omega_0 \otimes \operatorname{Id}_{E^*} \right)^{1/r} = f_t \,\omega_0^n, \quad f_t > 0,$$

and trace free, rank $r^2 - 1$, Hermite-Einstein conditions

$$(T)$$
 $\omega_t^{n-1} \wedge \Theta_{E,h_t}^{\circ} = g_t$

with smoothly varying families of functions $f_t \in C^{\infty}(X,\mathbb{R})$, Hermitian metrics $\omega_t > 0$ on X and sections

$$g_t \in C^{\infty}(X, \Lambda_{\mathbb{R}}^{n,n} T_X^* \otimes \operatorname{Herm}_{h_t}^{\circ}(E, E)), \quad t \in [0, 1].$$

Observe that this is a determined (not overdetermined!) system.

Choice of the initial state (t = 0)

We start with the Uhlenbeck-Yau solution $h_0=q_\varepsilon$ of of the "cushioned" trace free Hermite-Einstein equation, so that det $h_0=\det H_0$, and take $\alpha>0$ so large that

$${}^T\Theta_{E,h_0} + \alpha \,\omega_0 \otimes \mathrm{Id}_{E^*} > 0$$
 in the sense of Nakano.

If conditions (D) and (T) can be met for all $t \in [0,1]$, thus without any explosion of the solutions h_t , we infer from (D) that

$${}^T\Theta_{E,h_t}+(1-t)lpha\,\omega_0\otimes \mathrm{Id}_{E^*}>0$$
 in the sense of Nakano

for all $t \in [0, 1]$.

Observation

At time t = 1, we would then get a Hermitian metric h_1 on E such that Θ_{E,h_1} is dual Nakano positive !!

J.-P. Demailly, Virtual Conference on SCV, August 20, 2020

Griffiths conjecture on the positivity of vector bundles

15/21

Possible choices of the right hand side

One still has the freedom of adjusting f_t , ω_t and g_t in the general setup. There are in fact many possibilities:

Proposition

Let (E, H_0) be a smooth Hermitian holomorphic vector bundle such that E is ample and $\omega_0 = \Theta_{\det E, \det H_0} > 0$. Then the system of determinantal and trace free equations

(D)
$$\det_{T_X \otimes E^*} ({}^T\Theta_{E,h_t} + (1-t)\alpha \omega_0 \otimes \operatorname{Id}_{E^*})^{1/r} = F(t,z,h_t,D_zh_t)$$

$$(T) \ \omega_0^{n-1} \wedge \Theta_{E,h_t}^{\circ} = G(t,z,h_t,D_zh_t,D_z^2h_t) \in \mathrm{Herm}^{\circ}(E,E)$$

(where F > 0), is a well determined system of PDEs.

It is elliptic whenever the symbol η_h of the linearized operator $u\mapsto DG_{D^2h}(t,z,h,Dh,D^2h)\cdot D^2u$ has an Hilbert-Schmidt norm

$$\sup_{\xi \in T_X^*, |\xi|_{\omega_0} = 1} \|\eta_{h_t}(\xi)\|_{h_t} \le (r^2 + 1)^{-1/2} n^{-1}$$

for any metric h_t involved, e.g. if G does not depend on D^2h .

Proof of the ellipticity

The (long, computational) proof consists of analyzing the linearized system of equations, starting from the curvature tensor formula

$$\Theta_{E,h} = i\overline{\partial}(h^{-1}\partial h) = i\overline{\partial}(\widetilde{h}^{-1}\partial_{H_0}\widetilde{h}),$$

where $\partial_{H_0} s = H_0^{-1} \partial(H_0 s)$ is the (1,0)-component of the Chern connection on Hom(E,E) associated with H_0 on E.

Let us recall that the ellipticity of an operator

$$P: C^{\infty}(V) \to C^{\infty}(W), \quad f \mapsto P(f) = \sum_{|\alpha| \le m} a_{\alpha}(x) D^{\alpha} f(x)$$

means the invertibility of the principal symbol

$$\sigma_P(x,\xi) = \sum_{|\alpha| < m} a_{\alpha}(x) \, \xi^{\alpha} \in \mathsf{Hom}(V,W)$$

whenever $0 \neq \xi \in T_{X,x}^*$.

For instance, on the torus $\mathbb{R}^n/\mathbb{Z}^n$, $f\mapsto P_{\lambda}(f)=-\Delta f+\lambda f$ has an invertible symbol $\sigma_{P_{\lambda}}(x,\xi)=-|\xi|^2$, but P_{λ} is invertible only for $\lambda>0$.

J.-P. Demailly, Virtual Conference on SCV, August 20, 2020

Griffiths conjecture on the positivity of vector bundles

17/21

A more specific choice of the right hand side

Theorem

The elliptic differential system defined by

$$\det_{T_X \otimes E^*} \left({}^T \Theta_{E,h} + (1-t)\alpha \, \omega_0 \otimes \operatorname{Id}_{E^*} \right)^{1/r} = \left(\frac{\det H_0(z)}{\det h_t(z)} \right)^{\lambda} a_0(z),$$

$$\omega_0^{n-1} \wedge \Theta_{E^\circ,h} = -\varepsilon \left(\frac{\det H_0(z)}{\det h_t(z)} \right)^{\mu} (\log \widetilde{h}^\circ) \, \omega_0^n$$

possesses an invertible elliptic linearization for $\varepsilon \geq \varepsilon_0(h_t)$ and $\lambda \geq \lambda_0(h_t)(1+\mu^2)$, with $\varepsilon_0(h_t)$ and $\lambda_0(h_t)$ large enough.

Corollary

Under the above conditions, starting from the Uhlenbeck-Yau solution h_0 such that det $h_0 = \det H_0$ at t = 0, the PDE system still has a solution for $t \in [0, t_0]$ and $t_0 > 0$ small. (What for $t_0 = 1$?)

Here, the proof consists of analyzing the total symbol of the linearized operator, and the rest is just linear algebra.

Monge-Ampère volume for vector bundles

If $E \to X$ is an ample vector bundle of rank r that is dual Nakano positive, one can introduce its Monge-Ampère volume to be

$$\operatorname{MAVol}(E) = \sup_{h} \int_{X} \det_{T_{X} \otimes E^{*}} \left((2\pi)^{-1} {}^{T} \Theta_{E,h} \right)^{1/r},$$

where the supremum is taken over all smooth metrics h on E such that ${}^T\Theta_{E,h}$ is Nakano positive.

This supremum is always finite, and in fact

Proposition

For any dual Nakano positive vector bundle E, one has

$$MAVol(E) \leq r^{-n}c_1(E)^n$$
.

Taking $\omega_0 = \Theta_{\det E}$, the proof is a consequence of the inequality $(\prod \lambda_j)^{1/nr} \leq \frac{1}{nr} \sum \lambda_j$ between geometric and arithmetic means, for the eigenvalues λ_j of $(2\pi)^{-1} {}^T\Theta_{E,h}$, after raising to power n.

J.-P. Demailly, Virtual Conference on SCV, August 20, 2020

Griffiths conjecture on the positivity of vector bundles

19/21

Concluding remarks

- Siarhei Finski (PostDoc at Institut Fourier right now) has observed that the equality holds iff E is projectively flat.
- In the split case $E = \bigoplus_{1 \le j \le r} E_j$ and $h = \bigoplus_{1 \le j \le r} h_j$, the inequality reads

$$\left(\prod_{1 < j < r} c_1(E_j)^n\right)^{1/r} \le r^{-n} c_1(E)^n,$$

with equality iff $c_1(E_1) = \cdots = c_1(E_r)$.

• In the split case, it seems natural to conjecture that

$$\mathrm{MAVol}(E) = \left(\prod_{1 \leq j \leq r} c_1(E_j)^n\right)^{1/r},$$

i.e. that the supremum is reached for split metrics $h=\bigoplus h_j$.

• The Euler-Lagrange equation for the maximizer is 4th order.

Thank you for your attention

J.-P. Demailly, Virtual Conference on SCV, August 20, 2020

Griffiths conjecture on the positivity of vector bundles

21/21