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Abstract: The function f(z) = zk has the following property on the unit
circle: The distance d(f(p), f(q)) = kd(p, q) so is multiplied by k for nearby
points p, q. We say that f has entropy log k. In general a polynomial f(z)
of degree k has entropy log k. Going to two dimensions, Smillie proved in
1990 that the Henon map F(z;w) = (f(z) + w, z) has entropy log k if f(z) is
a polynomial of degree k. It is natural to think then that if f(z) is an entire
transcendental function, then the entropy of F should be infinite. Indeed
this is the case. The key tool is the Ahlfors 5 Island Theorem. This is work
in progress together with Leandro Arosio, Anna Miriam Benini and Han
Peters.
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1. Introduction

Intoduction about complex dynamics. Basic example: f(z) = z2. Dy-
namics is the study of iterations f◦n(z) = z2

n
. Where is the family of iter-

ates well behaved, i.e. a normal family and where is it not. There are three
sets: |z| < 1. fn → 0, |z| > 1. fn(z) → ∞. Both normal. |z| = 1. Not
normal Terminology: |z| < 1, |z| > 1 Fatou set. |z| = 1 Julia set.

Why did people decide to study complex dynamics: Historicallythere are
two sources, Newtons method and Celestial dynamics. These led to rational
functions or polynomials.
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Later this has been extended to more general complex manifolds.

Motivations:
For Newtons method the motivation was to find a way to approximate roots
of polynomials, something with many applications. For celestial mechanics:
Give a phenomenological understanding: Which phenomena are possible
and this is in a situation where one can rely on a huge body of complex
analysis. Note that for rigorous results in real life, this is anyways never
possible. Even the three body problem cannot be done precisely.

Two directions: Study better the Fatou set and better the Julia set. For
example for the Newton method. How many times should you iterate to get
a given accuracy. The other direction is the Julia set, for example entropy.

The concept of entropy comes from physics. If X is a system and F :
X → X is given. A point x ∈ X is a possible state of the system and F (x)
is the state in the next moment. Then the entropy is a continuous function
g : X → R which is increasing, i.e. g(F (x)) ≥ g(x).

In our case X = C or C2 and F : X → X is a holomorphic map. In
the case F (z) = z2, we see that if p is a periodic point, F ◦n(p) = p then
necessarily g(Fm(p)) = g(p) for allm. This implies that g = c, some constant
c on the unit circle. For p not on the unit circle g will increase and reaches
a maximum at the origin and another at infinity, g(0) > g{|z|=1|}. Both the
attracting fixed points 0 and infinity are equilibrium states, as well as the
points on the unit circle.

Question: What is the value of the entropy on the Julia set (or at the
attracting fixed points?) Apparently, in thermodynamics, where entropy
comes from, the value of the entropy is not important, it is the change in
entropy that is important.

So the value of the entropy on the Julia set is a non issue. Nevertheless,
entropy on equiblibrium states was introduced elsewhere, first in information
theory. Then motivated by formulas used in information theory, researchers
in the Soviet Union introduced entropy in dynamical systems.

This gave a value of the entropy on the unit circle, namely log 2. Also it
gives the value 0 for the origin.

There are two well developed directions iin complex dynamics that I will
mention here. Let f : C → C.
1. One dimensional entire functions
2. Polynomial Henon maps H(z, w) = (f(z) + δw, z)
Our project is to combine these two approaches in order to begin a study of
dynamics of automorphisms in Cn. We investigate H(z, w) = (f(z) + δw, z)
where f is entire (transcendental Henon maps).
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ENTROPY:
For maps acting on compact spaces the concept of topological entropy has
been introduced in 1965 (Adler- Konheim-McAndrew).

Definition 1.1 (Definition of topological entropy for compact sets). Let
f : X → X be a continuous self-map of a compact metric space (X, d). Let
n ∈ N and δ > 0. A set E ⊂ X is called (n, δ)-separated if for any z ̸= w ∈ E
there exists k ≤ n − 1 such that d(fk(z), fk(w)) > δ. Let K(n, δ) be the
maximal cardinality of an (n, δ)-separated set. Then the topological entropy
E(X, f) is defined as

E(X, f) := sup
δ>0

{
lim sup
n→∞

1

n
logK(n, δ)

}
.

In the literature there are several non-equivalent natural generalizations
for the definition of topological entropy on non-compact spaces. We will use
the definition introduced by Canovas and Rodŕıguez (2005).

Definition 1.2. Let f : Y → Y be a continuous self-map of a metric space
(Y, d). Then the topological entropy E(Y, f) is defined as the supremum of
E(X, f) over all compact subsets X ⊂ Y for which f(X) ⊂ Y.

THE APPROACH:

Suppose you have k disjoint closed discs, D1, . . . , Dk. Let U = ∪Ui and
suppose that your map f has a very expansive property: f(Di) ⊃ U for all i.
Fix an integer n and take any list of n of the Di: Di1 , . . . , Din . Then one can
find a point p1 ∈ Di1 so that p2 = f(p1) ∈ Di2 , ...., pn = fn−1(p) ∈ Din . This

gives rise to kn well separated orbits. So this gives an entropy log kn

n = log k.

The collection of these orbits show that the entropy of the map f is at
least log k.

This method was used by Marcus Wendt (2005), a student of Bergweiler,
in his (unpublished) thesis to show infinite entropy of entire transcendental
functions on C. The main tool was the Ahlfors 5 Island Theorem.

Theorem 1.3 (Ahlfors five islands Theorem). Let D1, . . . , D5 be Jordan
domains on the Riemann sphere with pairwise disjoint closures and let D ⊂
C be a domain. Then the family of all meromorphic functions f : D → Ĉ
with the property that none of the Dj has a univalent preimage in D is
normal.

One has the following version:

Corollary 1.4. Let D1, . . . , Dk with k ≥ 3 be bounded Jordan domains in C
with pairwise disjoint closures and let D ⊂ C be a domain. Let F be a family
of holomorphic functions on D which is not normal in D. Then there is an
f ∈ F so that for all but at most 2 values of j, Dj has a univalent preimage
in D.
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CONJUGACY INVARIANCE:

An important concept in dynamics is conjugacy invariance. It actually
only means that what you study is independent on the choice of coordinates.
For example, entropy is conjugacy invariant. For us, this is very important
and was exploited in Wendts work. More precisely:

Let f : C(z) → C(z) be a holomorphic function. The dynamics of f is the
study of iterations f◦n. The map L(z) = w given by w = z/n is a change of
coordinates. If we calculate f in these coordinates, we get the map gn(w)
where L ◦ f = g ◦ L. So fk = L−1 ◦ gkn ◦ L.

Similarly the Henon map F (z, w) = (f(z) + aw, z) is conjugate to the
map Gn(z, w) = (fn(z) + aw, z) under the coordinate change L(z, w) =
(z/n,w/n).

The connection to Ahlfors comes from exploiting the normality or lack
there of for the family of entire functions fn(z). So the idea is to use the
properties that comes from the Ahlfors theorem to a suitable fn for some
large enough n.

NORMALITY PROPERTIES OF THE SEQUENCE fn

If we fix an open set U ⊂ C, we are used to questions like whether a given
sequence of analytic functions gn : U → C is normal or not., i.e. whether one
has subsequences which converge uniformly on compact sets to an analytic
function or to infinity. For our purpose, (to use Ahlfors) we need something
slightly different.

The twist is to use quasinormality. It turns out then that there are two
very different lines of proof, depending on whether the fn are quasi-normal
or not (on suitable sets U).

We state the definition of quasinormality.

Definition 1.5. Let Ω ⊂ C be a domain. A family F of holomorphic
functions on Ω is quasi-normal if for every sequence (fn) of functions in
Ω there exists a finite set Q ⊂ Ω and a subsequence (fnk

) of (fn) which
converges uniformly on compact subsets of Ω \Q.

Conversely:

Proposition 1.6. Let Ω ⊂ C be a domain and let F be a not quasi-
normal family of holomorphic functions Ω → C. Then there exists a
sequence (fn) ⊂ F and an infinite subset Q = (xj)j≥1 ⊂ Ω such that no
subsequence of (fn) converges uniformly in any neighborhood of any xj.

2. The Quasinormal case

In this section we prove the following result:
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Theorem 2.1. Let F : (z, w) 7→ (f(z) − δw, z) be a transcendental Hénon
map, and suppose that the transcendental functions defined by fn(z) =
f(nz)/n form a quasi-normal family. Then F has infinite entropy.

There are two steps:
(1) Show that f behaves on compact sets like a polynomial of degree d for
arbitrarily large degree.
(2) Rely on the generalization by Dujardin 2004 of Smille (1990) entropy
results for polynomial Henon maps

Polynomial-like maps and one-dimensional lemmas

The proof of Theorem 2.1 uses the notion of polynomial-like maps, Douady-
Hubbard 1985.

Definition 2.2 (Polynomial-like maps). A polynomial-like map of degree d
is a branched holomorphic covering of degree d from a Jordan domain U to
a Jordan domain U ′, with U compactly contained in U ′.

It is well known that polynomial-like maps of degree d have entropy ex-
actly log d.

For any r ∈ R let us denote by Dr the Euclidean disk of radius r centered
at 0. Let f be entire transcendental and let F be the family of rescalings
fn(z) = f(nz)/n. Assume that F is quasinormal. Then there is a subse-
quence (fnk

) of (fn) and a finite set Q such that (fnk
) converges uniformly

on compact sets of C \Q.

Lemma 2.3. The set Q contains the origin, and there exists 0 < s < 1 such
that fnk

→ ∞ uniformly on compact subsets of Ds \ {0}.

Proof. Observe first that for all radius r > 0, any subsequence of (fn) is
unbounded in the circle ∂rD. Indeed, for any n we have that fn(D 1√

n
) =

f(D√
n)/n, and the maximum modulus of a transcendental function on a

disk of radius r grows faster than r2.

We claim that (fnk
) does not converge uniformly in a neighborhood of 0,

so in particular, 0 ∈ Q. Indeed, fnk
(0) = f(0)

nk
→ 0 as nk → ∞, while (fnk

)

is unbounded in any neighborhood of 0. Since Q is finite we can find s such
that fnk

→ g uniformly on compact subsets of Ds\{0}, with g : Ds\{0} → C
or g = ∞. Since (fnk

) is unbounded in any circle ∂rD we obtain g = ∞. □
Proposition 2.4. Let s, (fnk

) be as in Lemma 2.3. Let 0 < r < s < 1 < R,
and for k sufficiently large let Uk be the connected component of f−1

nk
(DR)

containing 0. Then there exists k0 ∈ N such that for k > k0 we have

(1) |fnk
(z)| > R for every z ∈ ∂Dr.

(2) The component Uk is compactly contained in Dr.
(3) fnk

: Uk → DR is polynomial-like of degree dk → ∞.
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The reason for (3) is that f−1(p) is usually infinite for transcendental
functions.

Corollary 2.5. Since the entropy of polynomial-like maps of degree d equals
log d, it follows that if F is quasinormal then f has infinite topological en-
tropy.

Henon-like maps and Proof of Theorem 2.1

The following results and definitions are from Dujardin 2004.

Let ∆ = Dr1 × Dr2 be a bidisk, ∂v(∆), ∂h(∆) denote its vertical and
horizontal boundary respectively. The following definition of Henon-like
maps is in Dujardin04.

Definition 2.6. An injective holomorphic mapH defined in a neighborhood
of ∆ is called Hénon-like if

(1) H(∆) ∩∆ ̸= ∅;
(2) H(∂v(∆)) ∩∆ = ∅;
(3) H(∆) ∩ ∂∆ ⊂ ∂v(∆).

Let πz, πw : C2 → C denote the projection to the z and to the w axis
respectively.

Following Dujardin04 we have

Definition 2.7. Let H be a Henon-like map in ∆ and let Lh be any hor-
izontal line intersecting ∆. The degree of H is the degree of the branched
covering

(2.1) πz ◦H : (H−1∆ ∩∆) ∩ Lh → U.

By Dujardin04, the map in (2.1) is proper, so the degree is well defined,
and it is independent of the chosen horizontal line.

Theorem 2.8. Let H be a Hénon-like map of degree d. The topological
entropy of H is log d.

Proof of Theorem 2.1. Let Fn(z, w) := (fn(z)− δw, z). Recall that for each
n, the maps Fn are topologically conjugate to F = (f(z) − δw, z) via the
map (z, w) 7→ (nz, nw).

In view of the fact that entropy is a topological invariant, it is enough
to find a sequence (Fnk

) and a sequence of polydisks ∆k on which Fnk
is

Hénon-like of degree dk → ∞.

□

3. The Non-Quasinormal case, via AHLFORS

Theorem 3.1. Let F : (z, w) 7→ (f(z) − δw, z) be a transcendental Hénon
map, and suppose that the transcendental functions defined by fn(z) =
f(nz)/n form a non quasi-normal family. Then F has infinite entropy.
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Assume that the family (fn) is not quasinormal.

Let (fnk
) be the subsequence of (fn) given by Proposition 1.6 and let

Q = (xj)j≥1 be the associated infinite set. Fix k. Let R > 0 be such that
the closures of the disks DR(xj), for j = 1, . . . , k are pairwise disjoint. Next
define 0 < r < R such that |δ|r < R − r. Recall that no subsequence of
(fnk

) is normal in any of the k disks Dr(xj), j = 1, . . . , k.

Lemma 3.2. For a given nk, and for i, ℓ ∈ {1, . . . , k} let

J(i, ℓ) := {j ∈ {1, . . . , k} : DR(xj + δxℓ) admits a biholomorphic preimage under fnk
in Dr(xi)}.

Then there exists nk such that #(J(i, ℓ)) ≥ k− 2 for every i, ℓ ∈ {1, . . . , k}.

Note that the term δxℓ comes from the problem that the first component
f(z) + δw has a disturbance from the δw term.

In what follows we denote the map fnk
given by the previous lemma

simply as fn. We will consider the dynamics of the Hénon map Fn(z, w) :=
(fn(z)− δw, z), which is linearly conjugate to F .

Definition 3.3. Let i, ℓ both lie in {1, . . . , k}. A holomorphic disk D is
called an (i, ℓ)-disk if

• it is a holomorphic graph over Dr(xi), that is D can be parametrized
as (z, w(z)) with w(z) holomorphic in Dr(xi);

• πw(D) ⊂ Dr(xℓ), where πw is the projection to the second coordi-
nate.

Lemma 3.4. Let i, ℓ ∈ {1, . . . , k}. Then for all j ∈ J(i, ℓ) and for all
(i, ℓ)-disk D there exists a holomorphic disk V ⊂ D for which Fn(V ) is a
(j, i)-disk.

We conclude the proof of non quasi-normal case by showing that Lemma 3.4
implies that the topological entropy of Fn is at least log(k − 2).

4. Periodic cycles of arbitrary order

We continue to a consider transcendental Hénon map F of the form

(z, w) 7→ (f(z)− δw, z).

Transcendental Henon maps might not have any fixed point, nor any
peridic points of order 2.

Theorem 4.1. A transcendental Hénon map has infinitely many periodic
cycles of any order N ≥ 3.
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5. Arbitrary Growth of entropy

In Dujardin04, he constructed transcendental Hénon maps with infinite
entropy by letting f(z) be an entire function which, on suitable disks Di, is
well approximated by polynomials of some degree di → ∞, and to deduce
that the corresponding Hénon map is Hénon-like on the bidiscs Di ×Di of
the same degree di. It follows that the Hénon map has topological entropy
at least log di → ∞.

The rate of the growth of entropy is then given by the relation between
di and the radii of the disks Di.

In this section we show that the entropy of lacunary power series, i.e.
power series with mostly vanishing coefficients, can grow at any prescribed
rate. We will first prove the statement for entire functions in one variable:

Theorem 5.1. Let h(R) be a continuous positive increasing function h :
[0,∞) → [0,∞) with h(0) = 0 and limR→∞ h(R) = ∞. Then there exists an
entire function f(z) and a sequence of radii Rj ↗ ∞ so that the topological
entropy of f on {|z| ≤ Rj} equals h(Rj).

Then this can be applied to the Henon maps on ∆Rj ×∆Rj .


