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Abstract. We study the regularity and algebraicity for mappings into classical domains. Among

other things, we establish everywhere regularity and algebraicity results for C2 CR maps into the

smooth boundary of a classical domain where the codimension can be arbitrarily large.
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1. Introduction

The first part of the article is devoted to establishing reflection principle type results for holomor-

phic and CR maps in several complex variables. The typical question of the reflection principle asks

to find conditions under which a CR map between real analytic CR submanifolds in complex spaces

extends holomorphically to an open neighborhood of the source manifold and when the submanifolds

are merely smooth, we investigate when the map has C∞ regularity. Results of this type date back

to the work of Fefferman [Fe], Lewy [Le], and Pinchuk [Pi]. In this paper, we concentrate on CR

mappings between real hypersurfaces of different dimensions. Much attention has been paid to the

development of the reflection principle along this line since the pioneering work of Webster [W], Faran

[Fa], and Forstnerič [Fr1]. We cannot mention all related work but only name a few recent work here:

[La1-3], [BX1-2], [KLX], [Mi], [LM]. See the book by Baouendi-Ebenfelt-Rothschild [BER2] for a

detailed account and more earlier references on this subject.

A particular case of interest is to study reflection principle type problem for maps between real

algebraic CR manifolds. A CR manifold is called real algebraic if it is defined by real polynomials.

The class of real algebraic CR manifolds is of fundamental importance in several complex analysis.

They arises naturally as the boundaries of bounded symmetric domains and the tube domain of future

light cone, as well as some homogeneous CR manifolds. Algebraicity properties of biholomorphisms

between real algebraic CR submanifolds has been extensively studied (cf. [BER1-2] and references

therein). Starting from the work of Forstnerič [Fr1] and Huang [Hu1], one expects a finitely smooth

CR map between real algebraic CR manifolds of different dimensions also to be algebraic under

some geometric conditions. Here a holomorphic map F : U ⊂ Cn → Cm is called (Nash) algebraic

if each component of F satisfies some holomorphic polynomial. Huang ([Hu1]) proved a CR map

F : M ⊂ Cn →M ′ ⊂ CN (N > n > 1) of class CN−n+1 between strongly pseudoconvex real algebraic

hypersurfaces M and M ′ must extend to an algebraic holomorphic map. In particular, if M and

M ′ are spheres, then by the result of Forstnerič [Fr1], F must extend to a holomorphic rational
1
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map. Zaitsev [Za] established algebraicity results for holomorphic maps between quite general CR

submanifolds. See the references in [Za] for more related algebraicity results.

The study of reflection principle is closely related to the regularity problem of proper maps between

two domains of possibly different dimensions. The discovery of inner functions reveals that at least

some initial regularity must be assumed to expect a reflection principle type result when the source

domain is strongly pseudoconvex (cf. [HS], [Gl], [Fr2], [St]). An important and long-standing question

in lots of settings is to find the optimal initial regularity assumption under which reflection principle

holds. Let F : Ω1 ⊂ Cn → Ω2 ⊂ CN be a holomorphic proper map between two domains. Even the

following question has puzzled researchers since a long time ago: Does there exist an integer k which

is independent of the codimension such that the reflection principle holds for proper maps F with

Ck boundary regularity under certain geometric conditions? Results are known only in some special

cases. Huang ([Hu3]) proved a proper holomorphic map from Bn to BN with 1 < n < N ≤ n(n+1)
2 ,

that is C3−smooth up to a boundary point, must be rational. We obtain in this paper a similar

algebraicity result for mappings into bounded symmetric domains. More precisely, we show the

algebraicity of proper maps into certain type I classical domains where the boundary regularity is

always assumed to be C2 and the codimension can be arbitrary large.

The subject of bounded symmetric domains plays an important role in complex analysis and

geometry. Many striking rigidity phenomena have been discovered on them or their quotient spaces.

See the work of Siu [S1-2] and Mok [M1-2] as well as the book [M3] for a detailed account on this

subject. The study of rigidity of proper maps between bounded symmetric domains dates back to

the work of Poincaré [Po] and Alexander [Al] on proper self-maps of unit balls of dimension at least

two. Many researchers have contributed to the study of proper maps between unit balls of different

dimensions. To name a few, we mention here [W], [Fa], [Fr], [Hu2-3], [HJ], [E2], [DL], [DX1-2].

The study of maps between bounded symmetric domains of higher rank has a vast difference due to

their distinct geometric structures. Tsai [Ts] proved that a proper map between bounded symmetric

domains D1 and D2 of the same rank (at least rank two) must be a totally geodesically isometric

embedding if D1 is irreducible. Much less is known about proper maps between bounded symmetric

domains of different ranks. Many interesting results have been obtained in the type I classical

domain case, see Mok [M4], Tu [Tu1-2], Ng [Ng1-2], Kim-Zaitsev [KZ1-2], etc. We refer the readers

to a recent article [NTY] for detailed surveys on this subject. Recently, Mok [M5] initiated the study

of rigidity of maps from the unit ball to bounded symmetric domains of higher rank, followed by the

work of [CM], [Ch], [UWZ], [XY1-2]. Our regularity results might shed light on future work towards

understanding rigidity of proper maps into classical domains.

We first introduce the following reflection principle type result, which is a starting point of this

paper. It recovers Theorem 1 in [KXL] as a special case. Recall a real hypersurface is called real-

algebraic if it is defined by a real polynomial. A map F : M →M ′ between real hypersurfaces is said

to be CR-transversal at p ∈ M if T
(1,0)
F (p)M

′ + T
(0,1)
F (p)M

′ + dF (CTpM) = CTF (p)M
′. The definition of

uniform 2−nondegeneracy will be given in Section 2.
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Theorem 1. Let M ⊂ Cn+1, (n ≥ 1) be a strongly pseudoconvex real-analytic (resp. smooth) hy-

persurface, and M ′ ⊂ CN+1, N > n, a uniformly 2−nondegenerate real-analytic (resp. smooth)

hypersurface. Assume the Levi form of M ′ has exactly n nonzero eigenvalues at every point. Let

F : M 7→M ′ be a CR-transversal CR-mapping of class C2. Then

(1) F is real-analytic (resp. smooth) everywhere on M.

(2) If in addition M,M ′ are both real-algebraic, then F extends to an algebraic holomorphic map.

Remark 1.1. If there is a C2 CR transversal map from a strongly pseudoconvex hypersurface M ⊂
Cn+1 near p ∈M to M ′ ⊂ CN+1, then the Levi form of M ′ has at least n nonzero eigenvalues of the

same sign near F (p). Example 2.4 in Section 2 shows that if we allow the Levi form of M ′ to have

more than n nonzero eigenvalues (even of the same sign) in Theorem 1, then the conclusions fail,

even if one poses stronger initial smoothness assumption on F .

The main purpose of this paper is to find applications of Theorem 1 and establish regularity results

for maps into Cartan’s classical domains (or their boundaries). For that we systematically study the

CR geometric properties of the smooth (part of the) boundaries of classical domains. Here for a

semi-analytic set A ⊂ CN , we say a ∈ A is a smooth point if there is a neighborhood U of a in CN

such that A∩U is a real-analytic submanifold in U . Otherwise, a is called a singular point. To explain

our results, we first recall the definition of Hermitian symmetric spaces. A complex manifold X with

a Hermitian metric h is said to be a Hermitian symmetric space if, for every point p ∈ X, there exists

an involutive holomorphic isometry σp of X such that p is an isolated fixed point. An irreducible

Hermitian symmetric spaces of noncompact type can be, by the Harish-Chandra embedding (cf. [M3],

[Wo]), realized as a bounded domain in some complex Euclidean space. Such domains are convex,

circular and sometimes are called bounded symmetric domains. Moreover, the boundary of a bounded

symmetric domain D is non-smooth and contains complex analytic varieties, unless D is the unit ball.

Among the irreducible bounded symmetric domains, there are so-called classical ones as opposed to

two exceptional cases. The classical ones, sometimes referred as Cartan’s classical domains, can be

classified into four types (cf. [M3]). We will write DI
p,q, D

II
m , D

III
m , DIV

m for the four types of classical

domains, respectively. See Section 4 for their definitions and more detailed discussion. We prove in

Section 4 that the smooth boundary of each classical domain, if it is not biholomorphic to the unit

ball, must be uniformly 2−nondegenerate (See also [KaZ] for related non-degeneracy results). The

2−nondegeneracy was known to experts at least in some cases (for instance, the type IV case). In

this paper, we give a complete treatment for all types in an explicit and computational way, with the

help of the boundary orbit theorem for bounded symmetric domains (See [Wo]).

The complex unit ball Bn in the complex n−dimensional space is a special case of the type I

classical domain. In this regard, the following propositions can be regarded as a natural extension of

results of Forstnerič [Fr1] and Huang [Hu3] along the line of studying mappings into the boundaries

of bounded symmetric domains.
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Proposition 1.2. Let q ≥ p ≥ 2 and M a strongly pseudoconvex real algebraic (smooth, real analytic

respectively) real hypersurface in Cp+q−1. Let F be a CR-transversal CR map of class C2 from M

to a smooth piece of the boundary of DI
p,q. Then F extends to an algebraic holomorphic map (F is

smooth, real analytic everywhere on M respectively).

Proposition 1.3. Let m ≥ 4 and M a strongly pseudoconvex real algebraic (smooth, real analytic

respectively) real hypersurface in C2m−3. Let F be a CR-transversal CR map of class C2 from M

to a smooth piece of the boundary of DII
m . Then F extends to an algebraic holomorphic map (F is

smooth, real analytic everywhere on M respectively).

Proposition 1.4. Let m ≥ 2 and M a strongly pseudoconvex real algebraic (smooth, real analytic

respectively) real hypersurface in Cm. Let F be a CR-transversal CR map of class C2 from M to a

smooth piece of the boundary of DIII
m . Then F extends to an algebraic holomorphic map (F is smooth,

real analytic everywhere on M respectively).

Note in Propositions 1.2-1.4, the codimension can be arbitrarily large if we increase p, q and m.

On the other hand, if we fix the target hypersurface (i.e., the smooth boundary of DI
p,q, D

II
m , D

III
m ,

respectively) in Propositions 1.2-1.4, and replace the source M by a real hypersurface of lower di-

mension, then the regularity or algebraicity result may fail, even assuming higher initial regularity

of the map. We illustrate this by explicit examples in Section 2. However, in sharp contrast to other

types, we have the following result (See part (2)) for type IV domains.

Proposition 1.5. (1). Let m ≥ 2 and M a strongly pseudoconvex smooth (real analytic respectively)

real hypersurface in Cm. Let F be a CR-transversal CR map of class C2 from M to a smooth piece

of the boundary of DIV
m+1. Then F is smooth (real analytic respectively) everywhere.

(2). Let m > n ≥ 1 and M a strongly pseudoconvex real algebraic real hypersurface in Cn+1. Let

F be a CR-transversal CR map of class Cm−n+1 from M to a smooth piece of the boundary of DIV
m+1.

Then F extends to an algebraic holomorphic map.

Note the first part of Proposition 1.5 has already been established in [KLX].

Remark 1.6. If there is a transversal CR map F of class C2 from a strongly pseudoconvex hy-

persurface M in Cn to a smooth piece of the boundary of DI
p,q (respectively, DII

m , D
III
m , DIV

m ) then

n ≤ p+q−1 (respectively, n ≤ 2m−3;n ≤ m;n ≤ m−1). See Proposition 4.1, 4.6, 4.7, 4.10 (See also

Lemma 3 in [M5]). In the equality cases, the existence of such map F as described in Propositions

1.2-1.5 follows from the work of Mok [M5] when M is an open piece of the unit sphere. Indeed, F can

be the boundary value of some holomorphic isometric maps from the unit ball to classical domains.

See explicit formulas for such maps in [XY2].

The last part of the paper is devoted to studying proper maps into classical domains; in particular,

we establish algebraicity result for proper mappings into type I and IV domains.
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Theorem 2. Let Ω ⊂ Cq+1(q ≥ 2) be a smoothly bounded domain with real algebraic boundary.

Then any holomorphic proper map F from Ω to DI
2,q, that is C2−smooth up to some open piece of

the boundary ∂Ω, must be algebraic.

Note in the above theorem, the codimension of the source and target domains equals to q − 1,

which can be arbitrarily large, while the initial regularity assumption for the map is always C2. It

is not clear to us whether this C2 smoothness assumption is optimal. However, at least some initial

boundary regularity has to be assumed to expect the algebraicity in Theorem 2. See Remark 1.9.

Remark 1.7. • In Theorem 2, we can say more about the map: F extends holomorphically

across a dense open subset G of ∂Ω and maps G to the smooth piece of ∂DI
2,q. But in general,

unlike rational proper maps between balls (cf. [CS]), one cannot expect G to be the whole

boundary ∂Ω even when Ω is the unit ball Bq+1. See the map F in Example 2.2 or [XY2].

• If we fix the target DI
2,q in Theorem 2, and replace the source Ω by a lower-dimensional do-

main, the algebraicity result may fail(no matter what initial regularity of the map is assumed).

See Example 2.1.

By a result of Dor (See Theorem 1 in [Do]. See also [DF]), for any convex open set D in CN+1(N ≥
n ≥ 2), there exists a proper map from the unit ball Bn to D. As bounded symmetric domains are

all convex, this indicates the unit ball Bn(n ≥ 2) can be properly mapped to any classical domain

of higher dimension by a holomorphic map. We observe that Bq+1(q ≥ 2) is indeed the maximal

dimensional ball that admits a holomorphic proper map to DI
2,q with C2 extension up to some

boundary point.

Corollary 1.8. Let Ω ⊂ Cn be a smoothly bounded domain with real analytic boundary, F a holo-

morphic proper map from Ω to DI
2,q(n ≥ q + 2 ≥ 4). Then F cannot be extended C2 smoothly up to

any open piece of ∂Ω.

Remark 1.9. In particular, by Corollary 1.8 and [Do], there exists a non-algebraic proper holomor-

phic map from Bq+2 to DI
2,q. By slicing Bq+2, we can get a non-algebraic proper holomorphic map

from Bq+1 to DI
2,q (This map is not C2 at any boundary point by Theorem 2). This indicates at least

some initial regularity is needed to conclude the algebraicity in Theorem 2.

Theorem 3. Let Ω ⊂ Cn+1, n ≥ 1, be a smoothly bounded domain with real algebraic boundary.

Then any holomorphic proper map F from Ω to DIV
m+1(m > n), that is Cm−n+1 smooth up to some

boundary point of Ω, must be algebraic.

Remark 1.10. Moreover, in Theorem 3, F extends holomorphically across a dense open subset G

of ∂Ω and maps G to the smooth piece of ∂DIV
m+1. As in Remark 1.7, we cannot expect G to be the

whole boundary of Ω even if Ω is the unit ball.

As an application of Theorem 3, we can drop the transversality assumption and weaken the

boundary regularity assumption of the rigidity theorem in [XY1].



6 MING XIAO

Corollary 1.11. Let F be a holomorphic proper map from Bn(5 ≤ n+1 ≤ m ≤ 2n−3) to the Lie ball

DIV
m that is Cm−n+1−smooth up to some open piece of ∂Bn. Then F is an isometric map with respect

to the Bergman metrics. Moreover, when m = n+ 1, after composing appropriate automorphisms of

Bn and DIV
n+1, F is one of the following two maps:(

z1, · · · , zn−1,
1
2

∑n−1
i=1 z

2
i − z2n + zn√

2(1− zn)
,
√
−1

1
2

∑n−1
i=1 z

2
i + z2n − zn√

2(1− zn)

)
; (1.1)

or z1, · · · , zn−1, zn, 1−
√√√√1−

n∑
j=1

z2j

 . (1.2)

The paper is organized as follows. In Section 2, we introduce some preliminaries on classical

domains and some basic notions in CR geometry. We also provide various explicit examples of

mapping into classical domains to support some remarks in the introduction. Section 3 is devoted

to the proof of Theorem 1. We investigate the CR geometric structure of smooth boundaries of

classical domains in Section 4. As applications, we use it to prove Propositions 1.2-1.5. Theorem 2

and Theorem 3, as well as Corollary 1.8, will be proved in Section 5.

Acknowledgment: The author thanks Peter Ebenfelt, Xiaojun Huang, Nordine Mir and Yuan

Yuan for helpful comments. He also thanks Sui-Chung Ng for valuable discussions on Hermitian

symmetric spaces.

2. Preliminaries and some examples

2.1. Classical domains and examples. The rank r of a bounded symmetric domain D can be

defined as the dimension of the maximal polydisc that can be totally geodesically embedded into D.

For an irreducible bounded symmetric domain D in Cn, the boundary ∂D decomposes into exactly

r orbits under the action of the identity component G0 of Aut(D) : ∂D = ∪ri=1Ei. Here E1 is the

unique open orbit, which is indeed the smooth part of ∂D (cf. Lemma 2.2.3 in [MN]). Moreover, Er

is the Shilov boundary, and Ek lies in the closure of El if k > l. As mentioned in the introduction,

irreducible bounded symmetric domains can be classified as Cartan’s four types of classical domains

and two exceptional cases (cf. [M3], [Wo]).

Assume p ≤ q and write Cp×q as the space of p× q matrices with entries of complex numbers. The

classical domain of type I is defined by:

DI
p,q = {Z ∈ Cp×q : Ip − ZZ

t
> 0}.

The boundary of DI
p,q is given

∂DI
p,q = {Z ∈ Cp×q : Ip − ZZ

t ≥ 0; det(Ip − ZZ
t
) = 0}.

Denote by C
m(m−1)

2
II = {Z ∈ Cm×m : Z = −Zt} and C

m(m+1)
2

III = {Z ∈ Cm×m : Z = Zt} the set of all

skew-symmetric and symmetric square matrices of size m ×m, respectively. The type II and type
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III classical domains are submanifolds of DI
m,m defined as:

DII
m = {Z ∈ C

m(m−1)
2

II : Im − ZZ
t
> 0};

DIII
m = {Z ∈ C

m(m+1)
2

III : Im − ZZ
t
> 0}.

Note DII
3 is biholomorphic to the unit ball B3. The boundaries of DII

m and DIII
m are given by the

following formulas:

∂DII
m = {Z ∈ C

m(m−1)
2

II : Im − ZZ
t ≥ 0; det(Im − ZZ

t
) = 0};

∂DIII
m = {Z ∈ C

m(m+1)
2

III : Im − ZZ
t ≥ 0; det(Im − ZZ

t
) = 0}.

The type IV classical domain, often called the Lie ball, is defined by

DIV
m = {Z = (z1, · · · , zm) ∈ Cm : ZZ

t
< 2, 1− ZZt +

1

4
|ZZt|2 > 0}.

Note DIV
2 is biholomorphic to the bidisc. The boundary of DIV

m is given by

∂DIV
m = {Z = (z1, · · · , zm) ∈ Cm : ZZ

t ≤ 2, 1− ZZt +
1

4
|ZZt|2 = 0}.

We will discuss more details about the boundaries of classical domains in Section 4. We next give

some examples of proper maps into classical domains. Let l, k ∈ Z, l ≥ 2, k ≥ 1. By Theorem 2.7 in

[BX2], there exists a holomorphic function φ in Bl which extends Ck smoothly to the sphere ∂Bl but

not Ck+1 up to any open piece of ∂Bl. Set F(l, k) to be the collections of all such functions φ.

In the following examples, we always equip an irreducible bounded symmetric domain D with

the normalized Bergman metric (Kähler-Einstein metric) such that the minimal disc is of constant

Gaussian curvature −2.

Example 2.1. Let H : Bq−1 → DI
2,q, q ≥ 3, be defined by

H(z1, · · · , zq−1) =

(
z1 · · · zq−1 0

0 · · · 0 φ

)
.

Fix k ≥ 1. Let φ ∈ F(q−1, k). We can additionally assume |φ| < 1 in Bq−1. Then H is a holomorphic

proper map and has Ck extension up to ∂Bq−1 but is not Ck+1 up to any boundary point. Moreover,

it is easy to see H maps ∂Bq−1 to the smooth part of ∂DI
2,q (See subsection 4.1). Clearly the

conclusion in Theorem 2 fails in this case.

Example 2.2. Let q ≥ p ≥ 3. Write the coordinates in Bp+q−3 as z = (z1, · · · , zp−1, w2, · · · , wq−1).
Let F : Bp+q−3 → DI

p−1,q−1 be an isometric map with respect to the normalized Bergman metrics.

The existence of such a map was proved in [M5]. An explicit example was given in [XY2] (See
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equation (42) in [XY2]):

F (z) =


z1 z2 ... zq−1

w2 f22 ... f2(q−1)
... ... ... ...

wp−1 f(p−1)2 ... f(p−1)(q−1)

 ,

where fij =
wizj
z1−1 , 2 ≤ i ≤ p− 1, 2 ≤ j ≤ q − 1. Indeed, it was proved in [XY2] that F satisfies

det(Ip − FF
t
) = 1−

q−1∑
j=1

|zi|2 −
p−1∑
i=2

|wi|2.

By (the proof on page 9 of) Theorem 2 in [M5], F maps a generic point on ∂Bp+q−3 to a smooth

point of ∂DI
p−1,q−1. Fix k ≥ 1. Let φ ∈ F(p + q − 3, k) with |φ| < 1 on Bp+q−3. Set the map

H : Bp+q−3 → DI
p,q to be

H(z) =

(
F (z) 0tp−1
0q−1 φ(z)

)
with 0p−1 and 0q−1 the (p− 1)−dimensional and (q − 1)−dimensional zero row vector, respectively.

Then H gives a holomorphic proper map and is Ck−smooth up to a generic boundary point. More-

over, by the propery of F and the fact that |φ| < 1, H maps a generic point on the sphere to a

smooth point of ∂DI
p,q. However, H is not Ck+1 at any boundary point.

Example 2.3. Let F be a rational holomorphic isometry from B2m−7 to DII
m−2(m ≥ 6) with respect

to the normalized Bergman metrics (the existence of such an isometry was proved in [M5] and an

explicit example was given by (50) in [XY2]). We define H : B2m−7 → DII
m as

H(z) =

 F (z) 0t 0t

0 0 φ(z)

0 −φ(z) 0

 ,

where 0 is a (m−2)−dimensional zero row vector, φ ∈ F(2m−7, k) with |φ| < 1 on B2m−7. It follows

from Theorem 2 of [M5] that F extends holomorphically across a generic point on the sphere and

maps it to a smooth point of ∂DII
m−2. Thus H is Ck−smooth up to a generic boundary point and

also maps it to a smooth point of ∂DII
m , but H is not Ck+1 at any boundary point.

Example 2.4. Let F be a rational holomorphic isometry from Bm−1 to DIII
m−1(m ≥ 3) (the existence

of such isometry was proved in [M5] and an explicit example was given by equation (53) in [XY2]).

We define H : Bm−1 → DIII
m to be:

H(z) =

(
F (z) 0t

0 φ(z)

)
.

Here 0 is a m−dimensional zero row vector, φ ∈ F(m− 1, k) with |φ| < 1 on Bm−1. It follows [M5]

that F maps a generic point on the sphere to a smooth point of ∂DIII
m−1. Consequently, H has a Ck

extension to a generic point on ∂Bm−1 and maps it to a smooth point of ∂DIII
m . However, H is not
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Ck+1 at any boundary point. Hence the conclusions in Theorem 1 fail in this case. By Proposition

4.7, the smooth boundary of ∂DIII
m is uniformly 2−nondegenerate and the Levi form has m − 1

nonzero eigenvalues of the same sign. In particular, it has more nonzero eigenvalues than the Levi

form of ∂Bm−1. This supports the assertion in Remark 1.1.

2.2. Two notions of degeneracy. In this section, we recall various notions of degeneracy in CR

geometry, and their relations. The following definition was introduced in [BHR].

Definition 2.5. Let M be a smooth generic submanifolds in CN of CR-dimension d and CR-

codimension n, and p ∈ M . Let ρ = (ρ1, ..., ρd) be the defining function of M near p, and choose a

basis L1, ..., Ln of CR vector fields near p. For a multiindex α = (α1, ..., αn), write Lα = Lα1
1 ...Lαnn .

Define the increasing sequence of subspaces El(p)(0 ≤ l ≤ k) of CN by

El(p) = SpanC{Lαρµ,Z(Z,Z)|Z=p : 0 ≤ |α| ≤ l, 1 ≤ µ ≤ d}.

Here ρµ,Z = (
∂ρµ
∂z1

, · · · , ∂ρµ∂zN
), and Z = (z1, · · · , zN ) are the coordinates in CN . We say that M is

k−nondegenerate at p, k ≥ 1 if

Ek−1(p) 6= Ek(p) = CN .

We say M is k−degenerate at p if Ek(p) 6= CN .

We say M is (everywhere) finitely nondegenerate if M is k(p)−nondegenerate at every p ∈ M

for some integer k(p) depending on p. A smooth CR-manifold M of hypersurface type is Levi-

nondegenerate at p ∈ M if and only if M is 1−nondegenerate at p. A real hypersurface is called

uniformly 2−nondegenerate if it is 2−nondegenerate at every point. This notion of degeneracy is

then generalized to CR-mappings by Lamel [La1] as follows.

Definition 2.6. Let M ⊂ CN ,M ′ ⊂ CN ′ be two generic CR-submanifolds of CR dimension n, n′,

respectively. Let H : M → M ′ be a CR-mapping of class Ck near p0 ∈ M. Let ρ = (ρ1, · · · , ρd′) be

local defining functions for M ′ near H(p0), and choose a basis L1, · · · , Ln of CR vector fields for M

near p0. If α = (α1, · · · , αn) is a multiindex, write Lα = Lα1
1 · · ·Lαnn . Define the increasing sequence

of subspaces El(p0)(0 ≤ l ≤ k) of CN ′ by

El(p0) = SpanC{Lαρµ,Z′(H(Z), H(Z))|Z=p0 : 0 ≤ |α| ≤ l, 1 ≤ µ ≤ d′}.

Here ρµ,Z′ = (
∂ρµ
∂z′1

, · · · , ∂ρµ
∂z′
N′

), and Z ′ = (z′1, · · · , z′N ′) are the coordinates in CN ′ . We say that H is

k0−nondegenerate at p0 (0 ≤ k0 ≤ k) if

Ek0−1(p0) 6= Ek0(p0) = CN
′
.

A manifold M is k0−nondegenerate if and only if the identity map from M to M is

k0−nondegenerate.
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2.3. Normalization of the map. We will need an auxiliary normalization result (Proposition 2.7)

for CR-maps from a strongly pseudoconvex real hypersurface to a pseudoconvex Levi degenerate

hypersurface. It is Proposition 3.4 from [KLX]. In [KLX], it did not give a proof and only indicated

it can be shown similarly as Proposition 3.3 there. For self-containedness, we will sketch a proof in

this paper.

Proposition 2.7. Let M ⊂ Cn+1(n ≥ 1) be a strongly pseudoconvex real-analytic (resp. smooth)

real hypersurface, M ′ ⊂ CN+1(N > n) a real-analytic (resp. smooth) real hypersurface. Assume

that F = (F1, ..., FN+1) : M 7→ M ′ is a CR-transversal CR-mapping of class C2 near p0 ∈ M with

F (p0) = q0, and that the Levi form of M ′ has exactly m(n ≤ m ≤ N) eigenvalues of the same sign

at q0. Then, after appropriate holomorphic changes of coordinates in Cn+1 and CN+1 respectively,

we have p0 = 0, q0 = 0, and the following normalization hold: M is defined by

r(Z,Z) = −Imzn+1 +

n∑
i=1

|zi|2 + ψ(Z,Z), ψ = O(|Z|3) (2.1)

near 0, and M ′ is defined by

ρ(W,W ) = −ImwN+1 +
m∑
j=1

|wj |2 + φ(W,W ), φ = O(|W |3) (2.2)

near 0, where Z = (z1, ..., zn+1),W = (w1, ..., wN+1) are the coordinates of Cn+1 and CN+1, respec-

tively. Here ψ and φ are real-analytic (resp. smooth). Furthermore, F satisfies:

∂Fi
∂zj

(0) = δij
√
λ, 1 ≤ i, j ≤ n;

∂FN+1

∂zn+1
(0) = λ (2.3)

for some λ > 0, and moreover,

∂Fk
∂zj

(0) = 0, 1 ≤ j ≤ n, n+ 1 ≤ k ≤ N ; (2.4)

∂FN+1

∂zj
(0) = 0, 1 ≤ j ≤ n. (2.5)

Proof. We assume, after a holomorphic change of coordinates in Cn+1, p0 = 0 and that M is defined

near 0 by (2.1). After a holomorphic change of coordinates in CN+1, we assume that q0 = F (p0) = 0

and that M ′ is locally defined near 0 by (2.2). Then F satisfies:

− FN+1 − FN+1

2i
+

m∑
i=1

|Fi|2 + φ(F, F ) = 0, (2.6)

along M. Since F is CR-transversal, we get λ :=
∂FN+1

∂s |0 6= 0, where we write zn+1 = s + it(cf.

[BER2]). Moreover, (2.6) shows that the imaginary part of FN+1 vanishes to second order at the

origin, and so λ is real. Write a basis {Lj}1≤j≤n for the CR vector fields along M near p0 as

Lj = 2i
(

∂r
∂zn+1

∂
∂zj
− ∂r

∂zj
∂

∂zn+1

)
, 1 ≤ j ≤ n. By applying Lj , LjLk, 1 ≤ j, k ≤ n to the equation (2.6)

and evaluating at 0, we get:
∂FN+1

∂zj
(0) = 0,

∂2FN+1

∂zj∂zk
(0) = 0, 1 ≤ j, k ≤ n.
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Hence we have,

FN+1(Z) = λzn+1 +O(|z̃||zn+1|+ |zn+1|2) + o(|Z|2). (2.7)

For 1 ≤ j ≤ N , we write Fj = ajzn+1 +
∑n

i=1 aijzi + O(|Z|2), for some aj ∈ C, aij ∈ C, 1 ≤ i ≤
n− 1, 1 ≤ j ≤ n. Or equivalently,

(F1, ..., FN ) = zn+1(a1, ..., aN ) + (z1, ..., zn)A+ (F̂1, ..., F̂N ), (2.8)

where A = (aij)1≤i≤n,1≤j≤N is an n ×N matrix, and F̂j = O(|Z|2), 1 ≤ j ≤ N. We substitute (2.7)

and (2.8) into (2.6) to get,

λ|z̃|2 +O(|z̃||zn+1|+ |zn+1|2) + o(|Z|2) = z̃ADmA
∗z̃
t
+O(|z̃||zn+1|+ |zn+1|2) + o(|Z|2), (2.9)

Here write z̃ = (z1, ..., zn) and Dm is the diagonal matrix whose first m diagonal entries are 1 and

the rest are 0. Equip z̃ with weight 1, and zn+1 with weight 2. Compare terms with weight 2 at both

sides of (2.9) to get:

λIn = ADmA
∗. (2.10)

It follows that λ > 0. Write A = (B0,b), where B0 is an n×m matrix, b is an n× (N−m) matrix.

Note (2.10) yields that B0B0
t

= λIn. We can then add more rows to B0 and get an m ×m matrix

B such that BB
t

= λIm. We now apply the following holomorphic change of coordinates: W̃ = WD

or W = W̃D−1, where we set

D =


1√
λ
B
t

c 0

0(N−m)×m I(N−m)×(N−m) 0

0t 0 1

 ,

and 0 is the m−dimensional zero column vector, c is an m× (N −m) matrix to be determined. We

compute

D−1 =


1√
λ
B d 0

0(N−m)×m I(N−m)×(N−m) 0

0t 0 1

 ,

where d = − 1√
λ
Bc.We write the new defining function ofM ′ and the map as ρ̃ and F̃ = (F̃1, ..., F̃N+1)

in the new coordinates W̃ = (w̃1, ..., w̃N+1), respectively. It is easy to see (See Lemma 3.1 in [KXL])

that ρ̃ still has the form of (2.2). More precisely, ρ̃(W̃ , W̃ ) = −Imw̃N+1 +
∑m

j=1 |w̃j |2 + φ̃(W̃ , W̃ ),

where φ̃ = O(|W̃ |3) is also a real-analytic (resp. smooth) function defined near 0. Moreover, since

F̃ = FD, it is easy to see that

∂F̃i
∂zj

(0) = δij
√
λ, 1 ≤ i, j ≤ n.

∂F̃i
∂zj

(0) = 0, n+ 1 ≤ i ≤ m, 1 ≤ j ≤ n.

Here we denote by δij the Kronecker symbol that takes value 1 when i = j and 0 otherwise.
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Lemma 2.8. We can choose an appropriate c such that

∂F̃k
∂zj

(0) = 0, 1 ≤ j ≤ n, m+ 1 ≤ k ≤ N. (2.11)

Proof: Note that (F̃m+1, · · · , F̃N ) = (F1, ..., FN )

(
c

I(N−m)×(N−m)

)
. Combining this with (2.8),

we obtain (2.11) holds if and only if A

(
c

I(N−m)×(N−m)

)
= 0n×(N−m). Recall A = (B0,b). We can

choose c such that B0c = −b as B0 is of full rank.

Proposition 2.7 follows if we still write W,F and ρ instead of W̃ , F̃ and ρ̃. �

3. Proof of Theorem 1

We will prove the two parts of Theorem 1 in separated subsections.

3.1. Proof of Theorem 1. In this subsection we give a proof for Theorem 1. The proof relies on a

special nondegeneracy property of the cubic tensor(defined using commutators of three vector fields,

cf. [E1]) for the uniformly 2−nondegenerate hypersurface M ′ where the Levi form is of constant

rank. This approach is inspired by [E1] and the readers are referred to the paper for more results

on uniformly Levi-degenerate hypersurfaces. To adapt with the normalization (Proposition 2.7), we

will make the above idea explicit by computations in local coordinates.

Fix p0 ∈ M and write q0 = F (p0) ∈ M ′. Choose appropriate coordinates such that p0 = 0, q0 = 0

and the normalization in Proposition 2.7 holds. Note under the assumption of Theorem 1, m = n in

(2.2). Let r, ψ, ρ, φ be as in (2.1) and (2.2). We will write for 1 ≤ k ≤ N,

Λk = 2i

(
∂ρ

∂wN+1

∂

∂wk
− ∂ρ

∂wk

∂

∂wN+1

)
, (3.1)

where {Λk}1≤k≤N forms a basis for the CR vector fields along M ′ near 0. Note by (2.2)

Λj = (1 + 2iφN+1)
∂

∂wj
− 2i(wj + φj)

∂

∂wN+1
, if 1 ≤ j ≤ n,

Λk = (1 + 2iφN+1)
∂

∂wk
− 2i(φk)

∂

∂wN+1
, if n+ 1 ≤ k ≤ N.

(3.2)

Here and in the following, we write for 1 ≤ i, j, k ≤ N + 1, φi = φwi = ∂φ
∂wi

, φi = φwi = ∂φ
∂wi

, φij =

φwiwj = ∂2φ
∂wi∂wj

, φijk = φwiwjwk = ∂3φ
∂wi∂wj∂wk

, etc.

Recall our notation ρW := ( ∂ρ
∂w1

, ..., ∂ρ
∂wN+1

). We compute

ρW (W,W ) = (w1 + φ1, ..., wn + φn, φn+1, · · · , φN ,
i

2
+ φN+1) (3.3)

We thus have

Λ1ρW (W,W ) =
(
h11, ..., h1(N+1)

)
, (3.4)
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where

h11 = (1 + 2iφ
(N+1)

)(1 + φ11)− 2i(w1 + φ1)φ1(N+1)
,

h1k = (1 + 2iφ
(N+1)

)φk1 − 2i(w1 + φ1)φk(N+1)
, if 2 ≤ k ≤ N + 1.

(3.5)

Hence

Λ1ρW (W,W ) = (1 +O(1), O(1), ..., O(1)). (3.6)

Here we write O(m) = O(|W |m) for any m ≥ 0. Similarly, we have for 1 ≤ j ≤ n,

ΛjρW (W,W ) = (O(1), ..., O(1), 1 +O(1), O(1), ..., O(1)), (3.7)

where the term 1 +O(1) is at the jth position. When n+ 1 ≤ k ≤ N,

ΛkρW (W,W ) = (O(1), ..., O(1), φk(n+1) +O(2), · · · , φkN +O(2), O(1)), (3.8)

where the first n components are all O(1).

For n+ 1 ≤ k ≤ N, we write the (n+ 2)×N matrix

∆k :=


ρW

Λ1ρW

...

ΛnρW

ΛkρW

 . (3.9)

Recall that the Levi form of M ′ has exactly n nonzero eigenvalues. Consequently, dimE1(q) = n+1

for any q near 0 (See Definition 2.6). This implies ∆k has rank n + 1 near 0 along M ′. Hence

every (n + 2) × (n + 2) submatrix of ∆k always has zero determinant near 0 along M ′. We will

write ∆k (1, · · · , n, l, N) as the submatrix of ∆k formed by the 1st, · · · , nth, lth, (N + 1)th columns,

where n + 1 ≤ l ≤ N. By equations (3.3), (3.7) and (3.8), we conclude that the determinant of

∆k (1, · · · , n, l, N) equals

± i

2
φkl +O(2). (3.10)

Note (3.10) vanishes identically near 0 along M ′. By applying Λj , 1 ≤ j ≤ N to (3.10) and evaluating

at 0, we obtain φjkl(0) = 0 for any 1 ≤ j ≤ N,n+1 ≤ k, l ≤ N. Combining this with (3.8), we obtain

ΛjΛkρW (0) ∈ SpanC{ρW ,Λ1ρW , · · · ,ΛnρW }|W=0 if 1 ≤ j ≤ N,n+ 1 ≤ k ≤ N. (3.11)

By the fact that M ′ is 2-nondegenerate at 0, we have:

SpanC{ΛαρW (W,W ) : 0 ≤ |α| ≤ 2}|W=0 = CN+1. (3.12)

We combine (3.11), (3.12) to obtain

SpanC{ρW ,Λ1ρW , · · · ,ΛnρW , {ΛjΛkρW }1≤j,k≤n}|W=0 = CN+1. (3.13)

We now need the following lemma. Recall we choose a basis of CR vector fields along M near

p0 = 0 : Lj = 2i
(

∂r
∂zn+1

∂
∂zj
− ∂r

∂zj
∂

∂zn+1

)
, 1 ≤ j ≤ n.
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Lemma 3.1. The following equations hold at 0 :

ρW (F, F )|Z=0 = ρW (W,W )|W=0; (3.14)

LjρW (F, F )|Z=0 =
√
λ · ΛiρW (W,W )|W=0, for 1 ≤ j ≤ n; (3.15)

For 1 ≤ j, k ≤ n, write Sjk and Pjk as the last N − n + 1 components of LjLkρW (F, F )|Z=0 and

ΛjΛkρW (W,W )|W=0, respectively. Then

Sjk = λPjk, for 1 ≤ j, k ≤ n. (3.16)

Proof of Lemma 3.1: With the normalization in Proposition 2.7 and equations (3.7), (3.8), an

easy computation yields that,

ρW (F, F )(0) = (0, ..., 0,
i

2
); (3.17)

LjρW (F, F )(0) = (0, ..., 0,
√
λ, 0, ..., 0), 1 ≤ j ≤ n. (3.18)

Here
√
λ is at the jth position. We thus obtain equations (3.14), (3.15) by comparing the above

equations to (3.3), (3.7). To prove (3.16), we note that for fixed 1 ≤ j0, k0 ≤ n,

Λj0Λk0ρW (W,W )|W=0 =
(
φj0k01(0), · · · , φj0k0(N+1)(0)

)
.

On the other hand, if we write

Lj0Lk0ρW (F, F )(0) := (ν1, · · · , νN+1), (3.19)

then for each n+ 1 ≤ l ≤ N + 1, we have by (3.3), (2.3), (2.4),

νl =
∂2φl(F, F )

∂zj0∂zk0

∣∣∣∣
0

=
N+1∑
i,j=1

∂2φl
∂wi∂wj

∣∣∣∣
0

∂Fi
∂zj0

∣∣∣∣
0

∂Fj
∂zk0

∣∣∣∣
0

= φj0k0l(0)
∂Fj0
∂zj0

∣∣∣∣
0

∂Fk0
∂zk0

∣∣∣∣
0

= λφj0k0l(0).

We thus obtain (3.16).

We conclude by Lemma 3.1 and equations (3.13), (3.17), (3.18) that

SpanC{ρW (F, F ), L1ρW (F, F ), · · · , LnρW (F, F ), {LjLkρW (F, F )}1≤j,k≤n}|Z=0 = CN+1.

This implies that F is 2−nondegenerate at 0 in the sense of Definition 2.6 ([La1]). By the results

of [La1, La2], F is real-analytic (resp. smooth) near 0, as required. This establishes the part (1) of

Theorem 1. In the case when M,M ′ are real algebraic, again as F is 2−nondegenerate at 0, then

it follows from Theorem 5 in [La3] that F is algebraic. This establishes part (2) of Theorem 1. To

provide some details to the readers on how k−nondegeneracy can be used to establish regularity of

the map, we sketch a proof here for the algebraicity case.

For that we first recall some needed notations. Let M ⊂ U(⊂ Cn) be a closed real-algebraic

subset defined by a family of real polynomials {ρα(Z,Z)}, where Z is the coordinates of Cn. Note

the complexification ρα(Z,W ) of ρα(Z,Z) is complex algebraic over U × conj(U) with conj(U) :=

{W : W ∈ U} for each α. Then the complexification M of M is the complex-algebraic subset in
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U × conj(U) defined by ρα(Z,W ) = 0 for each α. Let W ∈ Cn. The Segre variety of M associated

with the point W is defined by QW := {Z : (Z,W ) ∈M}. Recall the following fact from [Hu1].

Proposition 3.2. (Lemma 3, [Hu1]) Let M be a piece of strongly pseudoconvex real algebraic hy-

persurface. If g is a holomorphic function defined near p ∈M and algebraic on any Segre variety Qz

for z ≈ p, then g is algebraic.

The following result shows k−nondegeneracy of the map ensures the algebraicity (Note Lemma

3.3 is contained in Theorem 5 of [La3]).

Lemma 3.3. Let M ⊂ Cn+1 be a germ of real algebraic strongly pseudoconvex hypersurface, M ′ ⊂
CN+1, N ≥ n, a real algebraic generic CR submanifold. Let F be a CR map from M to M ′ of class

Ck, k ≥ 1. Assume that F is k−nondegenerate. Then F is algebraic.

Proof. First since F is k−nondegenerate, it follows from [La2] that F extends holomorphically to a

neighborhood of M. We write

M := {Z ∈ U : r(Z,Z) = 0}; M ′ := {W ∈ V : ρµ(W,W ) = 0, 1 ≤ µ ≤ d}.

Here U, V are small open sets in Cn+1,CN+1, respectively, and r, ρµ are real polynomials. Fix

p ∈ M. Assume ∂r
∂zn+1

(p) 6= 0. Write Lj = ∂r
∂zn+1

∂
∂zj

+ ∂r
∂zj

∂
∂zn+1

, 1 ≤ j ≤ n. Then {Lj}1≤j≤n
forms a basis of CR vector fields along M near p. Write Lα = Lα1

1 · · ·Lαnn for any multi-index

α = (α1, ..., αn). Since F is k−nondegenerate, we can find multi-indices α1, ..., αN+1 with each |αi| ≤ k
and 1 ≤ µ1, ..., µN+1 ≤ d, such that

SpanC{Lα
i
ρµi,W (F (Z), F (Z))|Z=p : 1 ≤ i ≤ N + 1} = CN+1. (3.20)

We obtain by complexification that

ρµ(F (Z), F (ξ)) = 0, 1 ≤ µ ≤ d, (3.21)

for r(Z, ξ) = 0, (Z, ξ) ∈ U × U. Here U is a neighborhood of p in Cn+1. Write ξ = (ξ1, ..., ξn), and

Lj =
∂r(Z, ξ)

∂ξn+1

∂

∂ξj
− ∂r(Z, ξ)

∂ξj

∂

∂ξn+1

, 1 ≤ j ≤ n.

They are vector fields along M := {(Z, ξ) ∈ U × U : r(Z, ξ) = 0}. Similarly as Lα, we write

Lα = Lα1
1 ...Lαnn for a multiindex α = (α1, ..., αn). Applying Lαi , 1 ≤ i ≤ N +1, to (3.21) with µ = µi,

we get

Lαiρµi(F (Z), F (ξ)) = 0, 1 ≤ i ≤ N + 1. (3.22)

for any (Z, ξ) ∈ U × U with r(Z, ξ) = 0. As r(z, ξ), ρµ(z, ξ) are polynomials, we conclude the

coefficients of the operators L′js are polynomials in (Z, ξ), and thus the left hand side of (3.22) is

polynomial in the variables corresponding to (Z, ξ, F (Z), (LαF (ξ))|α|≤k). We also note that for a

function h(·, ·) holomorphic in (Z, ξ) ∈ U × conj(U), we have Ljh(Z, ξ)|Z=ξ=p = Ljh(Z,Z)|Z=p. As

a consequence of (3.20), we have

SpanC{Lα
i
ρµi,W (F (Z), F (ξ)) : 1 ≤ i ≤ N + 1} = CN+1, (3.23)
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for any (Z, ξ) ∈ O×O, where O ⊂ U is a small neighborhood of p in Cn+1. Fix ξ = q ∈ O. By (3.23),

the (N + 1) equations in (3.22) give a vector-valued algebraic function Φ(Z,W ) = (Φ1, · · · ,ΦN+1)

in Cn+1×CN+1 such that the matrix ΦW is nondegenerate near (p̃, F (p̃)) for each p̃ ∈ O. Moreover,

Φ(Z,F (Z)) = 0, for Z ∈ Qq := {Z ∈ O : r(Z, q) = 0}. We apply the algebraic version of implicit

function theorem (cf. [Hu1]) to conclude that F is algebraic on Qq for each q ∈ O. We thus obtain

the algebraicity of F by Proposition 3.2. �

Remark 3.4. If M ′ ⊂ CN+1 is a real hypersurface as described in Theorem 1, then N ≤ n+ n2 by

the equation (3.13).

4. CR geometric properties of smooth boundaries of classical domains and

applications

In this section, we will systematically investigate the smooth boundaries of classical domains of

each type. As applications, we prove propositions 1.2-1.5. We first recall the notions and some basic

properties of Hermitian symmetric spaces. Let X0 be a Hermitian symmetric space of noncompact

type and X its compact dual. They can be expressed as coset spaces of Lie groups:

X0 = G0/K, X = G/P,

where G0 and G are the largest connected Lie groups of automorphisms of X0 and X respectively,

and the complex Lie subgroup G is the complexification of the real Lie group G0. Here K is the

isotropy subgroup of G0, and P is a maximal parabolic subgroup of G. One can arrange in such a

way that K = G0∩P by using the fact G0 ⊂ G. This leads to a natural embedding (Borel embedding)

β of X0 into X as an open subset: β(gK) = gP ∈ G/P = X. In this way, every automorphism of X0

extends to an automorphism of X, and X0 becomes an open G0−orbit in X.

In a more explicit way, the Harish-Chandra embedding realizes X0 as a bounded domain in the

holomorphic tangent space at some base point x0 ∈ X0. Roughly speaking, there is a complex

Euclidean space m+ ⊂ X, whose complement is a subvariety of lower dimension in X, such that

X0 ⊂ m+ ⊂ X. The inclusion X0 ⊂ m+ is a canonical realization of X0 as a bounded symmetric

domains. By the boundary orbit theorem (See page 287 , [Wo]), the topological boundary of X0 is

stratified into several G0−orbits in X. The smooth part of the boundary is one of these orbits (cf.

Lemma 2.2.3 in [MN]). The readers are referred to [Wo] for more details on the fine structure theory

of Hermitian symmetric spaces.

Recall irreducible bounded symmetric domains can be classified as Cartan’s four types of classical

domains and two exceptional cases (cf. [H], [M1]). We will discuss the smooth boundary separately

for each type of classical domains, and will prove the smooth boundary of an irreducible classical

domain with rank at least 2 must be uniformly 2−nondegenerate. As a byproduct, we compute the

number of nonzero eigenvalues of the Levi form at a smooth boundary point. This was also obtained

by Mok using a different approach (See Lemma 3, [M5]). As shown in [M5], the number of nonzero

eigenvalues of the Levi form is closely related to the dimension of the VMRT of the compact dual of

the classical domain (See Hwang-Mok [HM]).
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4.1. Smooth boundary of type I domain. We first study the boundary of the type I domain

DI
p,q = {Z ∈ Cp×q : Ip − ZZ

t
> 0}. Recall its boundary is given by ∂DI

p,q = {Z ∈ Cp×q : Ip − ZZ
t ≥

0; det(Ip−ZZ
t
) = 0}. To better illustrate the boundary, we recall the following basic fact from linear

algebra. Let Z be a p × q(p ≤ q) matrix. Then there exist a p × p unitary matrix U and a q × q
unitary matrix V such that

Z = U


r1 0 · · · 0 0 · · · 0

0 r2 · · · 0 0 · · · 0
...

...
. . .

...
...

. . .
...

0 0 · · · rp 0 · · · 0

 V

with r1 ≥ r2 ≥ · · · ≥ rp ≥ 0. The above equation is called the singular value decomposition of Z.

The ri’s are called the singular values of Z. Their squares give the eigenvalues of ZZ
t
.

Although we will not use this in the proof, for the convenience of the readers, we mention the

boundary of the type I domain DI
p,q is given by

∂DI
p,q = {Z ∈ Cp×q : 1 = r1 ≥ r2 ≥ · · · ≥ rp ≥ 0}

Here ri’s are the singular values of Z as above. The smooth part of ∂DI
p,q is given by (cf. [Wo], [M3]

or Proposition 2.1, [LT]):

Sp,q = {Z ∈ Cp×q : 1 = r1 > r2 ≥ · · · ≥ rp ≥ 0}.

In particular, diag(1, 0, · · · , 0) is a smooth boundary point of DI
p,q.

Write ρ(Z,Z
t
) = det(Ip − ZZ

t
). Then ρ is a local defining function of ∂DI

p,q near any smooth

point (cf. Lemma 2 in [M5]). Let G(p, q) be the compact dual of DI
p,q, i.e., the Grassmannian

space consisting of p planes in Cp+q. By the boundary orbit theorem in [Wo], given any two smooth

boundary points Z,W ∈ Sp,q ⊂ ∂DI
p,q ⊂ G(p, q), there is an automorphism g ∈ G0 of DI

p,q that

extends to some automorphism g̃ ∈ G of G(p, q) such that g̃(Z) = W. This fact will simplify a lot

our computation later.

Proposition 4.1. Let Z0 be a smooth point of the boundary ∂DI
p,q of DI

p,q(q ≥ p ≥ 2). Then ∂DI
p,q

is uniformly 2−nondegenerate at Z0. Moreover, the Levi form of ∂DI
p,q at Z0 has exactly p + q − 2

nonzero eigenvalues (and they are of the same sign).

Proof. As was discussed above, since (the extension of) the automorphism group G0 of DI
p,q acts

transitively on Sp,q, we can assume Z0 = diag(1, 0, · · · , 0). We will need the following lemma from

algebra (cf. [XY2]).
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Lemma 4.2. We denote by Z(
i1 ... ik

j1 ... jk
) the determinant of the submatrix of Z formed by its

ith1 , ..., i
th
k rows and jth1 , ..., j

th
k columns, where i1 < · · · < ik and j1 < · · · < jk. Then

det(Ip − ZZt) = 1 +

p∑
k=1

(−1)k

 ∑
1≤i1<i2<...<ik≤p,1≤j1<j2<...<jk≤q

∣∣∣∣∣Z(
i1 ... ik

j1 ... jk
)

∣∣∣∣∣
2
 . (4.1)

Write the coordinates in the matrix form: Z = (zij)1≤i≤p,1≤j≤q. We will also write Z as a row

vector in Cpq :

Z = (z11, · · · , z1q, z21, · · · , z2q, · · · , zp1, · · · , zpq).

Write Z̃ as the components of Z with z11 dropped.

Write ρZ = ( ∂ρ
∂zkl

)1≤k≤p,1≤l≤q. We arrange it to be (pq)−dimensional row vector and will say the

component ∂ρ
∂zkl

is at the (k, l)th position. One can readily check with the help of Lemma 4.2 that

ρZ |Z0 =
∂ρ

∂Z
|Z0 = (−1, 0, · · · , 0). (4.2)

Here clearly the component ”−1” is at the (1, 1)th position. Let (i, j) be a pair of integers in

S = {(i, j) : 1 ≤ i ≤ p, 1 ≤ j ≤ q, (i, j) 6= (1, 1)}. Set Lij to be the CR tangent vector fields along

∂DI
p,q near Z0 as follows:

Lij = − ∂ρ

∂z11

∂

∂zij
+

∂ρ

∂zij

∂

∂z11
. (4.3)

It is readily checked by Lemma 4.2 that

Lij = (z11 +O(||Z̃||2)) ∂

∂zij
− (zij +Hij(Z)z11 +O(||Z̃||2)) ∂

∂z11
. (4.4)

Here Hij(Z) = z11zij−z1jzi1 is holomorphic quadratic function in Z when i 6= 1 and j 6= 1. Otherwise,

Hij(Z) ≡ 0. Note we always have Hij(Z0) = 0.

Using the above equations, we calculate,

Lij |Z0 =
∂

∂zij
, (i, j) ∈ S. (4.5)

LstLij |Z0 =
∂

∂zst

∂

∂zij
, (i, j), (s, t) ∈ S. (4.6)

Fix (i, j) ∈ S. Then for any (k, l) ∈ S, the (k, l)th component of LijρZ |Z0 is given by

h(i, j, k, l) :=
∂2ρ

∂zij∂zkl
|Z0 .

We use the explicit formula in Lemma 4.2 to compute that,

• If (i, j) 6= (k, l), then h(i, j, k, l) = 0;

• If (i, j) = (k, l) ∈ S with i = k = 1, then h(1, j, 1, j) = ∂2

∂z1j∂z1j
(−|z1j |2) = −1;

• If (i, j) = (k, l) ∈ S with j = l = 1, then h(i, 1, i, 1) = ∂2

∂zi1∂zi1
(−|zi1|2) = −1;
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• If (i, j) = (k, l) ∈ S with i = k ≥ 2, j = l ≥ 2, then

h(i, j, i, j) =
∂2

∂zij∂zij
(−|zij |2 + |z11zij − z1jzi1|2)|Z0 = 0.

Thus we have if (1, j) ∈ S, i.e., 2 ≤ j ≤ q, then

L1jρZ |Z0 = (0, · · · , 0,−1, 0, · · · , 0). (4.7)

Here the component ”−1” is at the (1, j)th position. Similarly, if (i, 1) ∈ S, i.e., 2 ≤ i ≤ p,

Li1ρZ |Z0 = (0, · · · , 0,−1, 0, · · · , 0), (4.8)

where the component ”−1” is at the (i, 1)th position. When (i, j) ∈ S with i 6= 1, j 6= 1, we have

LijρZ |Z0 = (0, · · · , 0) (4.9)

with all components equal zero. Moreover, for (i, j) ∈ S with i 6= 1, j 6= 1,

Li1L1jρZ |Z0 =
∂2

∂zi1∂z1j
ρZ |Z0 = (0, · · · , 0,−1, 0, · · · , 0), (4.10)

where the component ”−1” is at the (i, j)th position. Indeed, for any 1 ≤ s ≤ p, 1 ≤ t ≤ q, the (s, t)th

component of ∂2

∂zi1∂z1j
ρZ |Z0 is given by

∂3ρ

∂zi1∂z1j∂zst
|Z0 .

Note every term in the expansion of ρ is annihilated by ∂3

∂zi1∂z1j∂zst
when evaluated at Z0 unless

(s, t) = (i, j). In the case when (s, t) = (i, j), the only nonzero term is

∂3

∂zi1∂z1j∂zij

(∣∣∣∣∣z11 z1j

zi1 zij

∣∣∣∣∣
∣∣∣∣∣z11 z1j

zi1 zij

∣∣∣∣∣
) ∣∣

Z0
= −1.

This establishes the equation (4.10). It follows from equations (4.7-4.9) that,

rank

(
ρZ

(LijρZ)(i,j)∈S

)∣∣
Z0

= p+ q − 1. (4.11)

Here (LijρZ)(i,j)∈S denotes the matrix with |S| = pq − 1 rows, where in each row it is the vectors

LijρZ . This implies the Levi form of ∂DI
p,q at Z0 has precisely p+ q − 2 nonzero eigenvalues. They

are of the same sign as DI
p,q is pseudoconvex. One the other hand, equations (4.7), (4.8), (4.10) imply

rank


ρZ

(L1jρZ)2≤j≤q
(Li1ρZ)2≤i≤p

(Li1L1jρZ)2≤i≤p,2≤j≤q

∣∣Z0
= pq. (4.12)

Here (Li1L1jρZ)2≤i≤p,2≤j≤q denotes (p−1)(q−1) rows of vectors Li1L1jρZ with 2 ≤ i ≤ p, 2 ≤ j ≤ q.
The rows (L1jρZ)2≤j≤q , (Li1ρZ)2≤i≤p are defined similarly. This implies ∂DI

p,q is 2−nondegenerate

at p. We have thus established Proposition 4.1. �
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Proof of Proposition 1.2: Proposition 1.2 follows from Theorem 1 and Proposition 4.1.

4.2. Smooth boundary of type II domain. Recall that we denote the coordinates in C
m(m−1)

2
II

by a skew-symmetric m×m matrix Z. Note the boundary of the type II domain DII
m is given by

∂DII
m = {Z ∈ C

m(m−1)
2

II : 1 = r1 = r2 ≥ r3 ≥ · · · ≥ rm ≥ 0},

where ri’s are the singular values of Z. The defining function of the smooth boundary ofDII
m is slightly

different as det(Im − ZZ
t
) is a reducible polynomial when Z is skew-symmetric. More precisely, we

have the following lemma (cf. [H], [PS]).

Lemma 4.3. Let In be the n× n identity matrix, Z be an n× n skew-symmetric matrix. Then

det(In − ZZ
t
) =

1 +
∑

1≤k≤n,2|k

(−1)
k
2

 ∑
1≤i1<...<ik≤n

∣∣∣∣∣Z
(
i1 ... ik

i1 ... ik

)∣∣∣∣∣
2

. (4.13)

Here “2|k” means that k is divisible by 2.

Moreover, the determinant of a skew-symmetric matrix, as a polynomial in the matrix entries, is

also a complete square.

Lemma 4.4. Let A = (aij) be a 2n× 2n, n ≥ 1, skew-symmetric matrix. Then

det(A) = (pf(A))2.

Here pf(A) is the Pfaffian of A. It is a homogeneous polynomial in the matrix entries of degree n

(For explicit formula of pf(A), cf. [XY2]). Note that the determinant of an n × n skew-symmetric

matrix for n odd is always zero. The Pfaffian of an n×n skew-symmetric matrix for n odd is defined

to be zero.

Example 4.5. Let a, b, c, d, e, f ∈ C. Set A be the skew-symmetric matrix:

A =


0 a b c

−a 0 d e

−b −d 0 f

−c −e −f 0

 .

Then pf(A) = af − be+ cd and det(A) = (af − be+ cd)2.

Set

ρ = 1 +
∑

1≤k≤n,2|k

(−1)
k
2

 ∑
1≤i1<...<ik≤n

∣∣∣∣∣Z
(
i1 ... ik

i1 ... ik

)∣∣∣∣∣
 . (4.14)
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Then ρ is a local defining function for ∂DII
m at any smooth point (cf. Lemma 2 in [M5]). By Lemma

4.3, 4.4 and Example 4.5, we have

ρ = 1−
∑

1≤i<j≤m
|zij |2 +

∑
1≤i<j<k<l≤m

∣∣∣∣∣Z
(
i j k l

i j k l

)∣∣∣∣∣+O(||Z̃||4).

= 1−
∑

1≤i<j≤m
|zij |2 +

∑
1≤i<j<k<l≤m

|zijzkl − zikzjl + zilzjk|2 +O(||Z̃||4)
(4.15)

If we set Z0 to be the m×m skew-symmetric matrix:

Z0 =


0 1 0 · · · 0

−1 0 0 · · · 0

0 0 0 · · · 0

· · · · · · · · · · · · · · ·
0 0 0 · · · 0

 , (4.16)

then Z0 is a smooth boundary point of DII
m (cf. [Wo]). Given any two smooth boundary points

Z,W ∈ SIIm ⊂ ∂DII
m ⊂ X, by [Wo], there is an automorphism g ∈ G0 of DII

m that extends to some

automorphism g̃ ∈ G of its compact dual such that g̃(Z) = W.

Proposition 4.6. Let Z0 be a smooth point of the boundary ∂DII
m of DII

m (m ≥ 4). Then ∂DII
m is

uniformly 2−nondegenerate at Z0. Moreover, the Levi form of ∂DII
m at Z0 has exactly 2m−4 nonzero

eigenvalues (and they are of the same sign).

Proof. Again as (the extension of) the automorphism group G0 of DII
m acts transitively on the smooth

boundary, we can assume Z0 is as in (4.16). Recall we denote the coordinates in C
m(m−1)

2
II as Z which

is a skew-symmetric matrix. We will also write Z as a row vector:

Z = (zij)i<j = (z12, · · · , z1m, z23, · · · , z2m, · · · , zmm).

We write the row vector Z̃ as the components of Z with z12 dropped. Write ρZ = ( ∂ρ
∂zkl

)1≤k<l≤m. We

arrange it to be m(m−1)
2 −dimensional row vector and will say the component ∂ρ

∂zkl
is at the (k, l)th

position. By (4.15), one can easily check that,

ρZ |Z0 = (−1, 0, · · · , 0). (4.17)

Here clearly the component ”−1” is at the (1, 2)th position. Let (i, j) be a pair of integers in the set

S := {(i, j) : 1 ≤ i < j ≤ m, (i, j) 6= (1, 2)}. Set Lij to be the CR tangent vector fields along ∂DII
m

near Z0 as follows:

Lij = − ∂ρ

∂z12

∂

∂zij
+

∂ρ

∂zij

∂

∂z12
.

By (4.15), one can easily check that

Lij = (z12 +O(||Z̃||2)) ∂

∂zij
− (zij +Hij(Z)z12 +O(||Z̃||2)) ∂

∂z12
.
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Here Hij(Z) = z12zij − z1iz2j + z1jz2i is holomorphic quadratic function in Z when j > i > 2.

Otherwise, Hij(Z) ≡ 0. Note in all cases, we have Hij(Z0) = 0. Furthermore, using the above

equations, we calculate

Lij |Z0 =
∂

∂zij
, (i, j) ∈ S. (4.18)

LstLij |Z0 =
∂

∂zst

∂

∂zij
, (i, j), (s, t) ∈ S. (4.19)

Fix (i, j) ∈ S. Then for any (k, l) ∈ S, the (k, l)th component of LijρZ |Z0 is given by

h(i, j, k, l) :=
∂2ρ

∂zij∂zkl
|Z0 .

We use the explicit formula in (4.15) to compute that,

• If (i, j) 6= (k, l), then h(i, j, k, l) = 0;

• If (i, j) = (k, l) ∈ S and i = k = 1, then h(1, j, 1, j) = ∂2

∂z1j∂z1j
(−|z1j |2) = −1;

• If (i, j) = (k, l) ∈ S and i = k = 2, then h(2, j, 2, j) = ∂2

∂z2j∂z2j
(−|z2j |2) = −1;

• If (i, j) = (k, l) ∈ S and i = k ≥ 3, then

h(i, j, i, j) =
∂2

∂zij∂zij
(−|zij |2 + |z12zij − z1iz2j + z1jz2i|2) = 0.

Thus we have if (1, j) ∈ S, i.e., 3 ≤ j ≤ m, then

L1jρZ |Z0 = (0, · · · , 0,−1, 0, · · · , 0). (4.20)

Here the component ”−1” is at the (1, j)th position. Similarly, if (2, j) ∈ S, i.e., 3 ≤ j ≤ m,

L2jρZ |Z0 = (0, · · · , 0,−1, 0, · · · , 0), (4.21)

where the component ”−1” is at the (2, j)th position. When (i, j) ∈ S with i ≥ 3, we have

LijρZ |Z0 = (0, · · · , 0) (4.22)

with all components equal zero. Moreover,

L1iL2jρZ |Z0 =
∂2

∂z1i∂z2j
ρZ |Z0 = (0, · · · , 0,−1, 0, · · · , 0), (4.23)

where the component ”−1” is at the (i, j)th position. To verify that, we note for any 1 ≤ s < t ≤ m,
the (s, t)th component of ∂2

∂z1i∂z2j
ρZ |Z0 is given by

∂3ρ

∂z1i∂z2j∂zst
|Z0 .

Note every term in the expansion of ρ is annihilated by ∂3

∂z1i∂z2j∂zst
when evaluated at Z0 unless

(s, t) = (i, j). In the case when (s, t) = (i, j), the only nonzero term is

∂3

∂z1i∂z2j∂zij

(
|z12zij − z1iz2j + z1jz2i|2

) ∣∣
Z0

= −1.
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This establishes the equation (4.23). It follows from equations (4.20)-(4.22) that the Levi form of

∂DII
m has exactly 2m− 4 nonzero eigenvalues. We conclude by (4.20)-(4.23) that

rank


ρZ

(L1iρZ)3≤i≤m
(L2jρZ)3≤j≤m

(L1iL2jρZ)3≤i<j≤m

∣∣Z0
=
m(m− 1)

2
. (4.24)

This establishes Proposition 4.6. �

Proof of Proposition 1.3: Proposition 1.3 now follows from Theorem 1 and Proposition 4.6.

4.3. smooth boundary of the type III domain. As above, denote the coordinates in C
m(m+1)

2
III

by a symmetric matrix Z. We will write Z as a row vector

Z = (zij)i≤j = (z11, · · · , z1m, z22, · · · , z2m, · · · , zmm).

Note the boundary of the type III domain DIII
m is given by

∂DIII
m = {Z ∈ C

m(m+1)
2

III : 1 = r1 ≥ r2 ≥ · · · ≥ rm ≥ 0}.

Here r′is are the singular values of Z. The smooth part of the boundary is given by

Sm = {Z ∈ C
m(m+1)

2
III : 1 = r1 > r2 ≥ · · · ≥ rm ≥ 0}.

In particular, Z0 = diag(1, 0, · · · , 0) is a smooth boundary point of DIII
m . Write ρ(Z,Z) = det(Im −

ZZ
t
). Then ρ is a local defining function of DIII

m in C
m(m+1)

2
III at Z0.

By [Wo], given any two smooth boundary points Z,W ∈ SIIIm ⊂ ∂DIII
m , there is an automorphism

g ∈ G0 of DIII
m that extends to some automorphism g̃ ∈ G of its compact dual such that g̃(Z) = W.

Proposition 4.7. Let Z0 a smooth point of the boundary ∂DIII
m of DIII

m (m ≥ 2). Then ∂DIII
m is

uniformly 2−nondegenerate at Z0. Moreover, the Levi form of ∂DIII
m at Z0 has exactly m−1 nonzero

eigenvalues (and they are of the same sign).

Proof. The proof of this case will be very similar to type I. As before, since (the extension of) the

automorphism group G0 of DIII
m acts transitively on Sm, we can assume Z0 = diag(1, 0, · · · , 0). Set

Z̃ as the components of Z with z11 dropped. We derive from Lemma 4.2 the following fact. Recall

we write Z

(
i, j

k, l

)
to denote the determinant of the submatrix of Z formed the ith, jth rows and the

kth, lth columns. In this notation, we always presume i < j and k < l.
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Lemma 4.8. Let Z be a symmetric m×m matrix. Then

det
(
Im − ZZ

t
)

= 1−
m∑
i=1

|zii|2 − 2
∑

1≤i<j≤m
|zij |2 +

∑
1≤i<j≤m

∣∣∣∣∣Z
(
i, j

i, j

)∣∣∣∣∣
2

+ 2
∑

1≤i<k≤m,1≤j≤l≤m

∣∣∣∣∣Z
(
i, j

k, l

)∣∣∣∣∣
2

+ 2
∑

1≤i<j<l≤m

∣∣∣∣∣Z
(
i, j

i, l

)∣∣∣∣∣
2

+O(||Z̃||4).

(4.25)

We use the similar notion as above and write ρZ as a row vector:

ρZ = (
∂ρ

∂zkl
)1≤k≤l≤m.

Using Lemma 4.8, one can check

ρZ |Z0 = (−1, 0, · · · , 0), (4.26)

where the component ”−1” is at the (1, 1)th position. Let (i, j) be a pair of integers in the set

S := {(i, j) : 1 ≤ i ≤ j ≤ m, (i, j) 6= (1, 1)}. For (i, j) ∈ S, we defined Lij as in (4.3). One can check

the same equation as (4.4) holds for Lij here with

Hij =


(z11zii − z21i), if i = j ≥ 2;

(z11zij − z1jzi1 + z11zij − z1iz1j), if i 6= j, i ≥ 2, j ≥ 2;

0, if i = 1 or j = 1.

In particular Hij(Z0) = 0 for all (i, j) ∈ S. Furthermore, we still have the identities in (4.5), (4.6).

Now fix (i, j) ∈ S. For any (k, l) ∈ S, the (k, l)th component of LijρZ |Z0 is given by

h(i, j, k, l) :=
∂2ρ

∂zij∂zkl
|Z0 .

We use the explicit formula in Lemma 4.8 to derive the following lemma.

Lemma 4.9. • If (i, j) 6= (k, l), then h(i, j, k, l) = 0;

• If (i, j) = (k, l) ∈ S, and i = k = 1, then h(1, j, 1, j) = ∂2

∂z1j∂z1j
(−|z1j |2) = −1;

• If (i, j) = (k, l) ∈ S and 2 ≤ i = j, then h(i, i, i, i) = ∂2

∂zii∂zii
(−|zii|2 + |z11zii− z1iz1i|2)|Z0 = 0;

• If (i, j) = (k, l) ∈ S and 2 ≤ i < j, then

h(i, j, i, j) =
∂2

∂zij∂zij
(−2|zij |2 + 2|z11zij − z1jz1i|2)|Z0 = 0.

Thus we have if (1, j) ∈ S, i.e., 2 ≤ j ≤ m, then

L1jρZ |Z0 = (0, · · · , 0,−1, 0, · · · , 0). (4.27)

Here the component ”−1” is at the (1, j)th position. When (i, j) ∈ S (i.e., j ≥ 2), we have

LijρZ |Z0 = (0, · · · , 0). (4.28)
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with all components equal zero. Moreover, for (j, j) ∈ S with j ≥ 2,

L1jL1jρZ |Z0 =
∂2

∂z1j∂z1j
ρZ |Z0 = (0, · · · , 0,−1, 0, · · · , 0). (4.29)

where the component ”−1” is at the (j, j)th position. Indeed, for any 1 ≤ s ≤ p, 1 ≤ t ≤ q, the

(s, t)th component of ∂2

∂z1j∂z1j
ρZ |Z0 is given by

∂3ρ

∂z1j∂z1j∂zst
|Z0 .

Note every term in the expansion of ρ is annihilated by ∂3

∂z1j∂z1j∂zst
when evaluated at Z0 unless

(s, t) = (j, j). In the case when (s, t) = (j, j), the only nonzero term is

∂3

∂z1j∂z1j∂zjj

(∣∣∣∣∣z11 z1j

z1j zjj

∣∣∣∣∣
∣∣∣∣∣z11 z1j

z1j zjj

∣∣∣∣∣
) ∣∣

Z0
= −1.

This establishes the equation (4.29). Similarly, for (i, j) ∈ S with 2 ≤ i < j,

L1iL1jρZ |Z0 =
∂2

∂z1i∂z1j
ρZ |Z0 = (0, · · · , 0,−2, 0, · · · , 0). (4.30)

Here the component ”−2” is at the (i, j)th position. Indeed, for any 1 ≤ s ≤ p, 1 ≤ t ≤ q, the (st)th

component of ∂2

∂z1j∂z1j
ρZ |Z0 is given by

∂3ρ

∂z1i∂z1j∂zst
|Z0 .

Note every term in the expansion of ρ is annihilated by ∂3

∂z1i∂z1j∂zst
when evaluated at Z0 unless

(s, t) = (i, j). In the case when (s, t) = (i, j), the only nonzero term is

∂3

∂z1i∂z1j∂zij

(∣∣∣∣∣z11 z1j

z1i zij

∣∣∣∣∣
∣∣∣∣∣z11 z1j

z1i zij

∣∣∣∣∣+

∣∣∣∣∣z11 z1i

z1j zij

∣∣∣∣∣
∣∣∣∣∣z11 z1i

z1j zij

∣∣∣∣∣
) ∣∣

Z0
= −2.

This establishes the equation (4.30). It follows from (4.27), (4.28) that

rank

(
ρZ

(LijρZ)(i,j)∈S

)∣∣
Z0

= m.

Thus the Levi form of ∂DIII
m at p has exactly m− 1 eigenvalues. The equations (4.27)-(4.30) imply

rank

 ρZ

(L1jρZ)2≤j≤m
(L1iL1jρZ)2≤i≤j≤m

∣∣Z0
=
m(m+ 1)

2
.

This shows ∂DIII
m is 2−nondegenerate at p. We thus have established Proposition 4.7. �

Proof of Proposition 1.4: Proposition 1.4 follows from Theorem 1 and Proposition 4.7.
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4.4. Smooth boundary of the type IV domain. Recall the type IV domain in Cm,m ≥ 2, is

defined by

{Z = (z1, · · · , zm) ∈ Cm : 1− ||Z||2 +
1

4
|ZZt|2 > 0, ||Z||2 < 2}.

Here Zt denotes the transpose of Z. Note(cf. [XY]) the smooth part of the boundary of the type IV

domain is given by {Z = (z1, · · · , zm) ∈ Cm : 1− ||Z||2 + 1
4 |ZZ

t|2 = 0, ||Z||2 < 2}. The singular part

is given by {Z = (z1, · · · , zm) ∈ Cm : 1− ||Z||2 + 1
4 |ZZ

t|2 = 0, ||Z||2 = 2}.

Proposition 4.10. Let p be a smooth point of the boundary ∂DIV
m of DIV

m . Then ∂DIV
m is uniformly

2−nondegenerate at p. Moreover, the Levi form of ∂DIV
m at p has exactly m− 2 nonzero eigenvalues

(and they are of the same sign).

Proof. As the defining function in this case is much simpler than other types, we will provide a

proof without using the boundary orbit theorem in [Wo]. Fix a smooth point p of ∂DIV
m . Write

Re(v) and Im(v) as the real and imaginary part for a vector v. Note there exists θ ∈ [0, 2π) such

that Re(eiθp) and Im(eiθp) are orthogonal. Then there exists an orthogonal matrix T such that

eiθpT = (a, bi, 0, · · · , 0) with a, b ∈ R. Note eiθT is an automorphism of ∂DIV
m . By applying this

automorphism, we can assume p = (a, bi, 0, ..., 0). Since p is a smooth point on ∂DIV
m , we have

1− (a2 + b2) +
1

4
(a2 − b2)2 = 0, a2 + b2 < 2. (4.31)

Consequently, we must have a 6= 0, b 6= 0, and a2−b2 < 2. Write ρ = ||Z||2− 1
4 |ZZ

t|2−1. Then ∂DIV
m

is locally defined by ρ = 0 near p. Note ∂ρ
∂z1
|p = a(1− 1

2(a2 − b2)) 6= 0. We find a basis {L2, · · · , Lm}
for the CR vector fields near p along ∂DIV

m : For each 2 ≤ j ≤ m,

Lj =
∂ρ

∂zj

∂

∂z1
− ∂ρ

∂z1

∂

∂zj
= (zj −

1

2
(z21 + · · ·+ z2m)zj)

∂

∂z1
− (z1 −

1

2
(z21 + · · ·+ z2m)z1)

∂

∂zj
;

Moreover,

ρZ = (z1 −
1

2
(z21 + · · ·+ z2m)z1, z2 −

1

2
(z21 + · · ·+ z2m)z2, · · · , (zm −

1

2
(z21 + · · ·+ z2m)zm).

We will write S = ZZt =
∑m

j=1 z
2
j . We now compute L2ρZ(Z), if we write L2ρZ(Z) = (A1, · · · , Am),

then

A1 = z2(1− |z1|2) + z21z2 −
1

2
Sz2;A2 = −z1z22 +

1

2
Sz1 − z1(1− |z2|2).

For k ≥ 3, Ak = −z1z2zk + z1z2zk. Next if we write L3ρZ(Z) = (C1, · · · , Cm), then

C1 = (z3 −
1

2
Sz3)(1− |z1|2) + (z1 −

1

2
Sz1)(z1z3);C2 = −(z3 −

1

2
Sz3)(z1z2) + (z1 −

1

2
Sz1)(z2z3).

C3 = −z1z23 − z1(1− |z3|2) +
1

2
Sz1.
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For k ≥ 4, Ck = −z1z3zk + z1z3zk. One can compute other Ljρ similarly. We evaluate them at p to

get,

ρZ(p) =

(
a(1− 1

2
(a2 − b2)),−bi(1 +

1

2
(a2 − b2)), 0, · · · , 0

)
; (4.32)

L2ρZ |p =

(
−bi(−1 +

3

2
a2 +

1

2
b2),−a(1− 1

2
a2 − 3

2
b2), · · ·

)
. (4.33)

LjρZ |p = (0, · · · , 0, c0, 0, · · · , 0) with c0 = −a(1− 1

2
(a2 − b2)) 6= 0, 3 ≤ j ≤ m. (4.34)

Here the component ”c0” is at the jth position. We compute furthermore,

L2
3ρZ(p) = (D1, · · · , Dm),

where D1 = 1
2c0(a

2 + b2);D2 = c0abi. It follows from the above calculation that

∣∣∣∣∣∣∣∣∣
ρZ(p)

L2ρZ(p)

· · ·
LmρZ(p)

∣∣∣∣∣∣∣∣∣ =cm−20

∣∣∣∣∣a(1− 1
2a

2 + 1
2b

2) −bi(1 + 1
2a

2 − 1
2b

2)

bi(1− 3
2a

2 − 1
2b

2) −a(1− 1
2a

2 − 3
2b

2)

∣∣∣∣∣
=cm−20 (a2 + b2)

(
(a2 + b2)− 1− 1

4
(a2 − b2)2

)
= 0.

(4.35)

This together with (4.32), (4.33), (4.34) imply

rank


ρZ(p)

L2ρZ(p)

· · ·
LmρZ(p)

 = m− 1

Hence ∂DIV
m is Levi-degenerate at p. Moreover, the Levi form at p has m − 2 nonzero eigenvalues.

On the other hand,

∣∣∣∣∣∣∣∣∣∣∣∣

ρZ(p)

L3ρZ(p)

· · ·
LmρZ(p)

L2
3ρZ(p)

∣∣∣∣∣∣∣∣∣∣∣∣
=± cm−20

∣∣∣∣∣a(1− 1
2a

2 + 1
2b

2) −bi(1 + 1
2a

2 − 1
2b

2)
1
2c0(a

2 + b2) c0abi

∣∣∣∣∣ = ±cm−10 bi(
3

2
a2 +

1

2
b2 − 1

4
(a2 − b2)2)

=± cm−10 bi(1 +
1

2
a2 − 1

2
b2).

(4.36)

It is nonzero as a2+b2 < 2. Hence ∂DIV
m is 2−nondegenerate at p. Proposition 4.10 is established. �

Now part (1) of Proposition 1.5 follows from Theorem 1 and Proposition 4.10. We will postpone

the proof of part (2) to Section 5.
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5. Proof of Theorem 2 and 3

The following transversality result (Proposition 5.1) is folklore, and is sometimes referred to [Fo].

For completeness, we provide a short proof. It will be necessary for the proofs of Theorems 2 and 3.

Proposition 5.1. Let M ⊂ Cn,M ′ ⊂ CN be smooth real hypersurfaces and Ω1 ⊂ Cn,Ω2 ⊂ CN open

sets with M,M ′ as a part of their boundaries, respectively. Assume F is a holomorphic map from

Ω1 to Ω2 with C1 extension up to M, and maps M to M ′. If Ω2 is convex, then F is CR transversal

along M.

Proof. We first recall the following well-known fact (cf. [Ho], [Kr]) about convex sets.

Lemma 5.2. If M ′ is a smooth piece of the boundary of a convex open set D ⊂ Rm and b ∈ M ′,
then there exists a neighborhood U of b and a smooth defining function ρ of D in U such that ρ is

convex in U . That is,
m∑

j,k=1

∂2ρ(x)

∂xj∂xk
ξjξk ≥ 0 (5.1)

for every x ∈ U and ξ = (ξ1, · · · , ξm) ∈ Rm.

Fix a ∈M and write b = F (a). Lemma 5.2 yields that there is a smooth local defining function ρ

of Ω2 in some neighborhood U of b such that ρ is convex in U (in the sense of equation (5.1)). This

implies in particular ρ is plurisubharmonic in U . Shrinking Ω1 if necessary, we assume F maps Ω1

to U. As F is holomorphic in Ω1, we conclude ρ ◦ F is plurisubharmonic in Ω1. The implies ρ ◦ F is

in particular subharmonic in 2n real variables in Ω1. Note ρ ◦F < 0 on Ω1 and ρ ◦F (a) = 0 at every

a ∈ M. It follows from the Hopf lemma for subharmonic functions that ∂(ρ◦F )
∂ν |a > 0. Here ν is the

outward pointing normal unit vector of Ω1 at a ∈M. Hence F is transversal at a ∈M. �

We are now at the position to prove Theorem 2 and 3.

5.1. Mappings into type I domains: Proof of Theorem 2. By the assumption of Theorem 2,

F extends C2 smoothly up to an open piece M of ∂Ω. We claim that F must send a dense open

subset M0 of M to the smooth part of ∂DI
2,q. Suppose not, then F sends an open subset M∗ of M

to the singular part of ∂DI
2,q, which is given by

{Z ∈ C2×q : ZZ
t

= I2}. (5.2)

Write F in the matrix form F = (Fij)1≤i≤2,1≤j≤q. Then it follows that
∑q

j=1 |F1j |2 =
∑q

j=1 |F2j |2 = 1

on M∗. Hence F1 = (F11, · · · , F1q) and F2 = (F21, · · · , F2q) maps M∗ to the unit sphere ∂Bq, which

is of lower dimension than M∗. Since ∂Ω is of D’Angelo’s finite type (See [DA]), and in particular,

is strongly pseudoconvex at generic points. By shrinking M∗ if necessary, we can assume M∗ is

strongly pseudoconvex. Then by Theorem 5.1 in [BX1], F1 and F2, and thus F must be constant on

M∗, which further implies F is constant in Ω (cf. [BER2]). This is a contradiction.
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Hence F must map a dense open subset M0 to M to the smooth part of ∂DI
2,q. As DI

2,q is convex,

by Proposition 5.1, F is CR transversal along M0. Then it follows from Proposition 1.2 that F is

algebraic.

Proof of Corollary 1.8: We will show only for the case n = p+2 and the other cases are similar.

We prove by contradiction. Suppose F has C2 smooth extension up to an open piece M0 of ∂Ω. We

claim that F maps an open dense subset of M0 to the smooth part of ∂DI
2,q. Indeed, as ∂Ω is of finite

type, a generic boundary point is strongly pseudoconvex. By the same argument as above, we can

use Theorem 5.1 in [BX1] to show that F cannot map any open subset of M0 to the singular part

of ∂DI
2,q. Then by Proposition 5.1, F is transversal along M0. Note the Levi form of M0 ⊂ Cq+2 at

a generic point has q + 1 nonzero eigenvalues. By Proposition 4.1, however, the Levi form of ∂DI
2,q

has only q nonzero eigenvalues at a smooth point. This is a contradiction.

5.2. Mappings into the Lie ball: Proof of Theorem 3. Recall the tube domain τ+m+1 in Cm+1

over the future cone is given by

τ+m+1 := {W = (w1, · · · , wm, wm+1) ∈ Cm+1 : (Imwm+1)
2 > (Imw1)

2 + · · ·+ (Imwm)2, Imwm+1 > 0}.

Note the boundary of the tube domain over the future cone is given by ∂τ+m+1 := {W =

(w1, · · · , wm, wm+1) ∈ Cm+1 : (Imwm+1)
2 = (Imw1)

2 + · · ·+ (Imwm)2, Imwm+1 ≥ 0}. Write Tm+1 as

the smooth part of ∂τ+m+1.

Recall the Lie ball (or the type IV classical domain) in Cm+1 is given by DIV
m+1 := {z =

(z1, · · · , zm, zm+1) ∈ Cm+1 : 1−
∑m+1

j=1 |zj |2 + 1
4 |
∑m+1

j=1 z2j |2 > 0,
∑m+1

i=1 |zj |2 < 2}. Before we proceed

to prove Theorem 3, we recall the well-known fact that the future tube τ+m+1 is biholomorphic to the

Lie ball DIV
m+1. More precisely, define the map H : τ+m+1 → DIV

m+1 (cf. [SV]) by

z1 = 2
√

2i
w1

(W + i)2
, · · · , zm = 2

√
2i

wm
(W + i)2

, zm+1 =
√

2i
1 +W 2

(W + i)2
,

where the (m + 1)−dimensional vector i = (0, · · · , 0, i). Here for any W ∈ Cm+1, we write W 2 :=

w2
m+1 − w2

1 − · · · − w2
m. Then H gives a biholomorphic map from τ+m+1 to DIV

m+1.

The following lemma and its proof are inspired by a very interesting recent work of Mir [Mi] (One

may alternatively use ideas from [LM] to prove Lemma 5.3 as well).

Lemma 5.3. Let M ⊂ Cn+1(m > n ≥ 1) be a strictly pseudoconvex real algebraic real hypersurface,

F a CR transversal CR map of class Cm−n+1 from M to Tm+1. Then F extends to an algebraic

holomorphic map.

Proof. Fix p0 ∈ M and write q0 = F (p0). Apply appropriate changes of coordinates in Cn+1 and

Cm+1, such that p0 = 0, q0 = 0 and the normalization in Proposition 2.7 holds. In particular, the

target hypersurface is locally defined at 0 by (2.2). Thus we have the following equation holds on
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(an open piece of) M .

ρ(F (z), F (z)) = −ImFm+1(z) +
m∑
j=1

|Fj(z)|2 + φ(F (z), F (z)), φ(Z,Z) = O(|Z|3). (5.3)

We apply a basis of CR vector fields L1, · · · , Ln of M to this equation (5.3); together with (5.3)

we obtain a system Φ of (n+1) equations. Note Φ is polynomial in F, F and LF , and by Proposition

2.7, Φ is nondegenerate in (F1, · · · , Fn, Fm+1). We use the algebraic version of the implicit function

theorem to this equation system to obtain a holomorphic algebraic map Ψ(W,Λ,Ξ) valued in Cn+1,

defined in a neighborhood of (0, LF (0), 0) ∈ Cm+1 × Cn(m+1) × Cm−n, such that

(F1, · · · , Fn, Fm+1) = Ψ(F ,LF , Fn+1, · · · , Fm)

= (Ψ1(F ,LF , Fn+1, · · · , Fm), · · · ,Ψn+1(F ,LF , Fn+1, · · · , Fm)).
(5.4)

To establish the algebraicity, we will first need to show F is real-analytic on some open piece of

M, and thus extends holomorphically to a neighborhood in Cn+1 of this open piece. But we will

postpone the proof of this real-analyticity, and at this point, first assume F is real-analytic on some

open piece of M . We still write this open piece as M.

We borrow ideas from [Mi] and make the following claim.

Claim 1: Let l ≤ m − n. Assume the map F splits as F = (F̃ , F̂ ) ∈ Cr × Cm+1−r for some

1 ≤ r ≤ m− n and satisfies in a neighborhood M0 ⊂M of some p ∈M0 :

F̂ = Θ(z, z, (LαF )|α|≤l, F̃ (z)), (5.5)

for some Cm−r+1−valued complex algebraic function Θ defined in a neighborhood of

(p, p, ((LαF )(p))|α|≤l, F̃ (p)). Then we can pick one component of F̃ , denoted by F̃1, such that the

following holds in a neighborhood of some point q ∈M0 :

(F̂ , F̃1) = η(z, z, (LαF )|α|≤l+1, F̃2).

Here F̃ = (F̃1, F̃2). And η is a Cm−r+2−valued algebraic map in a neighborhood of

(q, q, ((LαF )(q))|α|≤l+1, F̃2(q)).

Proof of Claim 1: Here we can use a similar argument as in [Mi] (Lemma 2.1 on page 7) except

that we will need to take care of the algebraicity. To do that we use the ideas from [Hu1]. Write

w = (w̃, ŵ) ∈ Cr × Cm+1−r for the coordinates in Cm+1 associated with the splitting F = (F̃ , F̂ ).

We differentiate (5.5) to get

0 = Lj(Θ(z, z, ((LαF )(z))|α|≤l, F̃ (z)) =: Φj(z, z, ((L
αF )(z))|α|≤l+1, F̃ (z)), 1 ≤ j ≤ n. (5.6)

As M is real algebraic, we can assume Lj has polynomial coefficients in z. Using the fact

that the derivative of an algebraic function is still algebraic (See [Hu1]), we conclude each

Φj = Φj(z, ξ, (Λα)|α|≤l+1, w̃) is a Cm+1−r−valued algebraic function in a neighborhood of

(p, p, ((LαF )(p))|α|≤l+1, F̃ (p)). We will proceed in two cases.

Case 1: There is some 1 ≤ j0 ≤ n such that Φj(z, z, ((L
αF )(z))|α|≤l+1, w̃) 6≡ 0 for (z, w̃) in

some open piece M1 × V ⊂ M0 × Cr containing (p, F̃ (p)). Then there exists a multi-index β0 ∈ Nr
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with the minimal norm |β0| such that (Φj)w̃β0 (z, z, ((LαF )(z))|α|≤l+1, F̃ (z)) 6≡ 0 along M1. And

(Φj)w̃β (z, z, ((LαF )(z))|α|≤l+1, F̃ (z)) ≡ 0 along M1 if |β| < |β0|. The conclusion then follows from

the algebraic version of the implicit function theorem.

Case 2: For every 1 ≤ j ≤ n,Φj(z, z, ((L
αF )(z))|α|≤l+1, w̃) ≡ 0 for (z, w̃) in some open piece M1×

V ⊂M×Cr containing (p, F̃ (p)). By (5.6), Θ(z, z, ((LαF )(z))|α|≤l, w̃) is CR along M1×V. As M1×V
is minimal, by the standard edge-of-the-wedge theorem, we conclude that Θ(z, z, ((LαF )(z))|α|≤l, w̃)

extends to a holomorphic function, denoted by A(z, w̃) defined in a neighborhood U × V of M1 × V
in CN ×Cr. We claim A is algebraic in (z, w̃). It suffices to show A is algebraic in z and w̃ separately

(cf. [Hu1]). From the algebraicity of Θ, it is clear that A is algebraic in w̃. To show the algebraicity

of A in z, we fix w̃0 ∈ V and set ψ(z) = A(z, w̃0). Then ψ(z) is holomorphic in U and

ψ(z) = Θ(z, z, ((LαF )(z))|α|≤l, w̃0) for z ∈M1.

Since F extends holomorphically to a neighborhood of M, we can complexify the above equation.

That is, we replace z by the conjugate ξ of an independent variable ξ. Then fix ξ = ξ0 ≈ p0 ∈M1 to

conclude ψ(z) is algebraic when restricted to Qξ0 . As ξ0 is arbitrary, we apply Proposition 3.2 to get

the algebraicity of ψ and the algebraicity of A in z follows as well.

Note by (5.5), we have

F̂ (z) = A(z, F̃ (z)), z ∈M1. (5.7)

We next claim that

ρ(w̃, A(z, w̃), w̃, A(z, w̃)) 6≡ 0, (z, w̃) ∈M1 × V. (5.8)

Suppose not, i.e., the left hand side of the above equation vanishes everywhere along M1 × V. If we

set Ψt(z) = (t + F̃ (z), A(z, t + F̃ (z))), where t ∈ Cr sufficiently close to 0 and z ∈ M1 close to p,

then ρ(Ψt(z),Ψt(z)) ≡ 0. This implies (Ψt)t∈Cr is a non-trivial holomorphic deformation of germs at

p of real-analytic CR mappings from M1 to Tm+1 (See [Mi] for the definition). Moreover, by (5.7)

the real rank of (the Jacobian of) Ψ0 (with respect to (Rez, Imz)−variables) at p is equal to that of

F at p, which is at least 4 by the normalization (2.3). However, this contradicts with Lemma 2.3 of

[Mi], which asserts that any holomorphic deformation of CR maps from M1 to Tm+1 must have real

rank ≤ 2. Hence we have proved the claim in (5.8). For (z, w̃) ∈M1 × V, set

ρ∗(z, z, w̃, w̃) = ρ(w̃, A(z, w̃), w̃, A(z, w̃)). (5.9)

The algebraicity of A implies that ρ∗(z, ξ, w̃, χ) is algebraic in its variables. We again have two cases.

Case 1: There exists a multi-index β ∈ Nr such that ρ∗
w̃β

(z, z, F̃ (z), F̃ (z)) 6≡ 0 on M1. Let β0

be the multi-index with the minimal |β| such that the property holds. It follows from (5.7) that

|β0| > 0. Then as in the previous case 1, the conclusion follows from the algebraic version of the

implicit function theorem.

Case 2: For any β ∈ Nr, ρ∗
w̃β

(z, z, F̃ (z), F̃ (z)) ≡ 0 on M1. This implies ρ∗(z, z, w̃, F̃ (z)) ≡ 0 for

(z, w̃) ∈M1×V. The equations (5.8) and (5.9) imply there exists some ν ∈ Nγ with |ν| > 0 such that

ρ∗
w̃
ν (z, z, w̃, F̃ ) 6≡ 0 on M1 × V. The claim again is a consequence of the implicit function theorem.

We have thus established the claim.
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Observe (5.4) implies the assumption (5.5) holds in the claim with r = n + 1, l = 1. Then apply

the claim inductively m − n times, we obtain there exists some open piece M2 of M0 containing p∗

and a Cm+1−valued algebraic function ∆ defined in a neighborhood of (p∗, p∗, (Lαh(p∗))|α|≤m−n+1)

such that

F (z) = ∆(z, z, (LαF (z))|α|≤m−n+1), z ∈M2.

We complexify the above equation by replacing z by the conjugate ξ of an independent variable ξ

and fix ξ = ξ0 ≈ p∗ ∈ M2. This implies F (z) is algebraic when restricted on Qξ0 . As ξ0 is arbitrary,

by Proposition 3.2, we conclude F is algebraic and thus establish Lemma 5.3.

It remains to show F is real-analytic on some open subset of M . This can be shown using the

idea in [Mi]. Note a version of Claim 1 can be established in a similar manner where the algebraicity

of Θ and η is replaced by analyticity. To show this version of Claim 1, one only needs to use finite

smoothness of F rather than the analyticity. The readers are referred to Lemma 2.3 in [Mi] for more

details. Once this version of Claim 1 is established, we apply it to the equation (5.4) inductively

m− n times to obtain, similarly as above, that

F (z) = ∆̃(z, z, (LαF (z))|α|≤m−n+1), z ∈M2,

where M2 is some open piece of M and ∆̃(z, ξ,W ) is analytic in z, ξ and W . Then by standard

reflection principle, F extends holomorphically in a neighborhood of M2. �

Proof of Proposition 1.5, part (2): Let H be the biholomorphism from τ+m+1 to DIV
m+1 men-

tioned above. Note H extends holomorphically across a generic boundary point of ∂τm+1. Write H−1

be the inverse map of H. By shrinking M and composing F with some automorphism of DIV
m+1 if

necessary, we can assume H−1 extends to a biholomorphism in a neighborhood of the image F (M).

Then the induced map G := H−1 ◦ F is Cm−n+1 on M and maps M to the smooth part Tm+1

of ∂τm+1. Moreover, G is transversal on M as H−1 is a local biholomorphism. By Lemma 5.3, G

extends to an algebraic map. We finally conclude F also extends to an algebraic map H ◦G.

Proof of Theorem 3: Fix p0 ∈ Ω. By composing an automorphism of DIV
m+1 if necessary, we

assume F (p0) = 0. Write M as the open piece of ∂Ω where F has C2 smooth extension. As Ω

is a bounded domain with real analytic boundary, we conclude that ∂Ω is strictly pseudoconvex at

generic points (cf. [DA]). We claim that F sends an open dense subset M∗ of M to the smooth part

of ∂DIV
m+1. Suppose not, then F must send a strongly pseudoconvex piece M0 of M to the singular

part E of ∂DIV
m+1, which is given by E = {Z ∈ Cm+1 : 1 − ||Z||2 + 1

4 |ZZ
t|2 = 0, ||Z||2 = 2}. Or

equivalently, E = {Z ∈ Cm+1 : ||Z||2 = 2, |ZZt| = 2}. Thus h := FF t =
∑m+1

j=1 F 2
j has constant

modulus on M0. This yields h must be constant on M0. (cf. Theorem 5.1 in [BX1]). This further

implies h is constant in Ω. This is a contradiction as h(p0) = 0 and |h| = 2 on M0. Hence F maps

a dense open subset M∗ of M to the smooth part of ∂DIV
m+1. As DIV

m+1 is convex, by Proposition 5.1

we conclude that F is CR transversal along M∗. By part (2) of Proposition 1.5, F is algebraic.
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