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Abstract. In this paper, we first prove a Huang’s lemma type result. Then we discuss its applications

in studying rigidity problems of mappings into indefinite hyperbolic spaces and bounded symmetric

domains.
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1. Introduction

It is a classical problem in several complex variables to understand proper holomorphic maps

between complex unit balls since the pioneer work of Poincaré and Alexander (see [Al]). The classical

result of Alexander asserts that any proper holomorphic self-mapping of the unit ball Bn in Cn must

be an automorphism if n ≥ 2. Since the work of Webster [W], much effort has also been made

to study proper maps between unit balls of different dimensions. See [Fr], [CS], [St], [Hu], [HJY],

[DX] and many references therein for research along this line. A seminal step toward understanding

this problem was made by Huang in [Hu]. Huang proved when n < N ≤ 2n − 2, any proper

holomorphic map F from Bn to BN is totally geodesic with respect to the Bergman metrics if F

extends C2−smoothly up to some open piece of the boundary ∂Bn. One crucial ingredient in his proof

is an algebraic lemma (Lemma 3.2 in [Hu]), which is nowadays known as Huang’s lemma in the field

due to its wide applications. This lemma reveals the deep connection between the mapping problem

in CR geometry and the rank problem in real algebraic geometry. Here we recall the definition of the

rank of a real polynomial or more generally a real-valued real analytic function R(z, z) at some point

z0 ∈ C. Suppose R(z, z) can be written as R(z, z) =
∑p

i=1 |fi(z)|2 −
∑q

j=1 |gj(z)|2, p, q ∈ Z≥0, where

f ′is and g′js are holomorphic functions near z0, and f1, · · · , fp, g1, · · · , gq are linearly independent over

C. Then we say R(z, z) is of finite rank and r = p+ q is called the rank of R(z, z). We remark that

the rank of R(z, z) is independent of the choices of f ′is and g′js. The rank of R(z, z) is zero if and

only if R(z, z) is identically zero.

Huang’s lemma can be stated as follows. Write z = (z1, · · · , zm) for the coordinates in Cm,m ≥ 2.

Write |z| for the Euclidean norm of z. Let A(z, z) be a real analytic function near 0 such that

A(z, z)|z|2 =

m−1∑
j=1

ψj(z)φj(z), (1.1)
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where ψj(z) and φj(z) are holomorphic functions near 0 ∈ Cm. Then A(z, z) must be identically

zero. In the particular case when A(z, z) is real-valued, Huang’s lemma implies the rank of A(z, z)|z|2

cannot be less than m unless A(z, z) is of rank zero. The importance of Huang’s lemma lies in the

fact that it provides an effective tool to detect the degeneration of CR second fundamental form of

a CR maps between spheres (see [Hu] for more details). For more discussion on various versions

of Hermitian rank problems and their connections to mapping problems, see [DL], [E1], [E2] and

references therein. Recently, Ebenfelt systematically studied a rank problem (i.e., the sums of square

problem introduced in [E2]. See also [E1]) in real algebraic geometry and discussed how it is related

to a gap rigidity phenomenon (see Huang-Ji-Yin [HJY]) for proper maps between unit balls. Huang’s

lemma also plays an important role in the study of mapping problems into generalized balls or

hyperquadrics. Recall the generalized ball Bnl , 0 ≤ l ≤ n− 1, is defined as the following open subset

of Pn :

Bnl = {[z0, · · ·, zn] ∈ Pn : |z0|2 + · · ·+ |zl|2 > |zl+1|2 + · · ·+ |zn|2}.

The generalized ball has an important geometric feature as it inherites a canonical metric that is

invariant under the action of its automorphisms:

ωBn
l

= −
√
−1∂∂̄log

( l∑
j=0

|zj |2 −
n−1∑
j=l+1

|zj |2
)
.

When l = 0, the metric is identical with the (normalized) Poincaré metric on the unit ball. The

generalized ball equipped with the metric ωBn
l

is often called the indefinite hyperbolic space. See

[BH], [EHZ], [BEH] for many deep results on mappings into generalized balls or hyperquadrics, as

well as various different versions of Huang’s lemma and their applications. See also a recent paper

[HLTX1, HLTX2] and references therein. Roughly speaking, the complexity of proper holomorphic

maps from Bnl to BNl′ depends heavily on l and l′. We mention the following result of Baouendi-

Ebenfelt-Huang [BEH]. Here we say a holomorphic map F from an open subset V of Bnl to BNl′ is

isometric if F ∗(ωBN
l′

) = ωBn
l

on V .

Theorem 0.1 (Huang-Lu-Tang-Xiao [HLTX2]) Let N ≥ n ≥ 3 , 1 ≤ l ≤ n − 2, l ≤ l′ ≤ N − 1.

Let U be an open subset in Pn containing some p ∈ ∂Bnl and F be a holomorphic map from U into

PN . Assume U ∩ Bnl is connected and F (U ∩ Bnl ) ⊆ BNl′ , F (U ∩ ∂Bnl ) ⊆ ∂BNl′ . Assume one of the

following conditions holds:

(1). l′ < 2l, l′ < n− 1;

(2). l′ < 2l, N − l′ < n;

(3). N − l′ < 2n− 2l − 1, l′ < n− 1;

(4). N − l′ < 2n− 2l − 1, N − l′ < n.

Then F is an isometric embedding from (U ∩ Bnl , ωBn
l
) to (BNl′ , ωBN

l′
).
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The main result of the paper is a Huang’s lemma type theorem, i.e., Theorem 1. To explain our

result, we first introduce some notations. Fix 0 ≤ l ≤ m−1, we denote by δj,l the symbol which equals

−1 when 1 ≤ j ≤ l and equals 1 otherwise. In particular, if l = 0, δj,0 is identically one for all j ≥ 1.

Write z = (z1, · · · , zm) for the coordinates in Cm. For z, w ∈ Cm, we write 〈z, w〉l =
∑m

j=1 δj,lzjwj

and |z|2l = 〈z, z〉l. If l = 0, we have |z|20 = |z|2. Denote by Il,m the diagonal m × m matrix whose

first l diagonal entries are −1 and the rest are 1. We are now at the position to introduce our main

theorem.

Theorem 1. Let m ≥ 3 and 0 ≤ l ≤ m. Let {ψj(z)}mj=1 and {φj(z)}mj=1 be holomorphic functions in

z ∈ Cm near 0. Assume there is a real-analytic function A(z, z) near 0 such that

A(z, z)|z|2l =

m∑
j=1

ψj(z)φj(z). (1.2)

.

If A(z, z) 6≡ 0, then there exist holomorphic functions h1, h2 near 0, and B,C ∈ GL(m,C) with

BC
t

= Il,m, such that A(z, z) = h1(z)h2(z), and

(ψ1, · · · , ψm) = h1(z)(z1, · · · , zm)B; (φ1, · · · , φm) = h2(z)(z1, · · · , zm)C.

Remark 1.1. If in addition A(z, z) is real-valued in Theorem 1, then we can choose in such a way

that h2 = h1 or h2 = −h1, and thus A(z, z) = ±|h1(z)|2 for some holomorphic function h1 near 0.

The following result is an immediate consequence of Theorem 1.

Corollary 1.1. Let m and l be as in Theorem 1. Let 0 ≤ τ+, τ− ≤ m such that 1 ≤ τ+ + τ− ≤ m.

Let A(z, z) be a real-valued real analytic function near 0, and {ai(z)}τ
−
i=1, {bj(z)}τ

+

j=1 be two sets of

holomorphic functions near 0 such that

A(z, z)|z|2l = −
τ−∑
i=1

|ai(z)|2 +
τ+∑
j=1

|bj(z)|2.

Then one of the following three mutually exclusive cases must hold:

(1) A(z, z) ≡ 0.

(2) A(z, z) = |h(z)|2 for some nonzero holomorphic function h(z) and τ− = l, τ+ = m− l.
(3) A(z, z) = −|h(z)|2 for some nonzero holomorphic function h(z) and τ− = m− l, τ+ = l.

Moreover, in case (2) and (3), {ai(z), bj(z)}1≤i≤τ−,1≤j≤τ+ must be linearly independent over C.

We remark that Theorem 1 and Corollary 1.1 both fail if m = 2. For example, let z = (z1, z2) ∈ C2

and A(z, z) = |z1|2−|z2|2. Then A(z, z)|z|2 = |z1|4−|z2|4, and A(z, z) does not satisfy the conclusions

of Theorem 1 and Corollary 1.1. See also the following more general examples.

Example 1.1. (1) Let z = (z1, z2) ∈ C2 and A(z, z) = |z1|2n−2 + |z1|2n−4|z2|2 + · · ·+ |z2|2n−2 for

n ≥ 2. Then A(z, z)|z|21 = |z1|2n − |z2|2n.
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(2) Let z = (z1, z2) ∈ C2 and let k ≥ 2. Note that there exists a unique real polynomial A(z, z)

such that A(z, z)|z|2 = |z1|2
k−|z2|2

k
, and A(z, z) does not equal ±|h(z)|2 for any holomorphic

function h(z).

We remark that, when 0 < l < m, one can also directly prove Corollary 1.1 by using the result

of [BH] or [BEH]. Indeed, if 0 < l < m, the map (a1(z), · · · , aτ−(z), b1(z), · · · , bτ+(z)) induces a

holomorphic map sending the quadric {|z|2l = 0} to another quadric. Then similarly as in the proof

of Lemma 2.3 in [BEH], one can reduce it to a mapping problem between hyperquadrics and so that

the rigidity result in [BH] or [BEH] can be applied. This approach, however, does not work for the

cases l = 0 and l = m.

We will prove Theorem 1 by reducing it to a mapping problem. One will see that the proof of

Theorem 1 breaks down when m = 2 due to the failure of Poincaré type result in one dimensional

case (see §2). Note Corollary 1.1 implies that, if m ≥ 3 and the rank of A(z, z)|z|2l is less than or

equal to m, then A(z, z) must be of rank either zero or one. We expect Theorem 1 and Corollary 1.1

to be useful in the future study of mapping problems in CR geometry. In particular, in this paper we

will apply them to establish rigidity theorems (see Corollary 1.2 and 1.3) for mappings into indefinite

hyperbolic spaces and bounded symmetric domains.

Corollary 1.2. Let n ≥ 4, 0 ≤ l ≤ n − 1 and 0 ≤ l′ ≤ 2n − 2. Let U be an open subset of Pn

containing some p ∈ ∂Bnl such that U ∩ Bnl is connected. Let F : U → P2n−1 be a holomorphic map

such that F (U ∩ Bnl ) ⊆ B2n−1
l′ and F (U ∩ ∂Bnl ) ⊆ ∂B2n−1

l′ . If l′ 6= 2l and l′ 6= n − 1, then F is an

isometric embedding from (U ∩ Bnl , ωBn
l
) to (B2n−1

l′ , ωB2n−1
l′

).

We have the following remark and example regarding Corollary 1.2.

Remark 1.2. (1) Corollary 1.2 is optimal in the sense that the conclusion fails if either l′ = 2l

or l′ = n − 1. Indeed, there is the well-known Whitney map if l′ = l = 0. More generally,

see Example 1.6 in [HLTX2] for the generalized Whitney maps in the case l′ = 2l > 0,

and Example 1.7 in [HLTX2] for the generalized Whitney maps in the case l′ = n − 1 with

1 ≤ l ≤ n − 1, and the following Example 1.2 for the generalized Whitney maps in the case

l′ = n− 1 with 0 ≤ l ≤ n− 2.

(2) In the special case 1 ≤ l ≤ n− 2, Corollary 1.2 follows also from Theorem 0.1 (i.e., Theorem

1.1 in [HLTX2]). Indeed, the assumption of Corollary 1.2 yields one of the four conditions

holds in Theorem 0.1. It however does not cover the cases l = 0 and l = n − 1. We also

remark that to prove for these two cases, we don’t need to use the full generality of Theorem

1 (or Corollary 1.1).

Example 1.2. Let l ≥ 0, k ≥ 2. Write [w, z] = [w0, w1, · · · , wl, z1, · · · , zk] for the homogeneous

coordinates of Pl+k and

Bl+kl = {[w, z] ∈ Pk+l :

l∑
i=0

|wi|2 >
k∑
j=1

|zj |2}.
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Let V = Pl+k \ {z1 = zk = 0} and H : V → P2k+2l−1 be defined as follows:

H([w, z]) = [w0zk, w1zk, · · · , wlzk, z2
1 , z1z2, · · · , z1zk−1,

z2zk, z3zk, · · · , z2
k, w0z1, w1z1, · · · , wlz1].

Notice that |H|l+k = (|zk|2−|z1|2)(−
∑l

i=0 |wi|2 +
∑k

j=1 |zj |2). Thus H maps V ∩∂Bl+kl to ∂B2l+2k−1
l+k−1 .

In particular, set V+ := {[w, z] ∈ V : |zk| > |z1|}. Then H maps V+ ∩ Bl+kl to B2l+2k−1
l+k−1 and maps

V+ ∩ ∂Bl+kl to ∂B2l+2k−1
l+k−1 . Hence the conclusion in Corollary 1.2 fails if l′ = n− 1.

Corollary 1.2 can be applied to study proper maps from the unit ball to classical domains. The

study of holomorphic maps from the unit ball to higher rank classical domain was initiated by Mok

[M] and later investigated in [CM], [Ch], [UWZ], [XY1], [XY2] and [X], etc. In particular, Yuan

and the author [XY1] studied holomorphic proper maps from the unit ball to the type IV classical

domains (also called the Lie ball). Recall the Lie ball DIV
N in CN (N ≥ 2) is defined by

DIV
N = {Z = (z1, · · · , zN ) ∈ CN : ZZ

t
< 2 and 1− ZZt +

1

4
|ZZt|2 > 0}.

We normalize the Bergman metric on Bn and DIV
N so that the minimal disc is of constant Gaussian

curvature −2. Denote by ωBn and ωDIV
N

the two normalized Bergman metrics of Bn and DIV
N , respec-

tively. We say a holomorphic map F : Bn → DIV
N is an isometric embedding or simply an isometry if

F ∗(ωDIV
N

) = ωBn . The following result follows from the work in [XY1] and [X]: Let F be a holomor-

phic proper map from Bn to the Lie ball DIV
N (5 ≤ n+ 1 ≤ N ≤ 2n− 3) that is CN−n+1−smooth up

to some open piece of ∂Bn. Then F is an isometric embedding with F ∗(ωDIV
N

) = ωBn . Furthermore,

counterexamples were given in [XY1] to illustrate such rigidity result fails if N ≥ 2n, no matter

what boundary regularity is assumed. Yuan and the author thus raised the question to understand

whether the rigidity still holds in the remaining cases N = 2n − 2 and N = 2n − 1. In the last

part of the paper, we apply Corollary 1.2 to give an affirmative answer to this question in the case

N = 2n− 2.

Corollary 1.3. Let F be a holomorphic proper map from Bn(n ≥ 4) to DIV
2n−2 that extends

Cn−1−smoothly across some open piece of ∂Bn. Then F is an isometric embedding (with respect

to the normalized Bergman metrics).

The paper is organized as follows. Section 1 includes the proof of Theorem 1 and Corollary 1.1,

except that a technical lemma (i.e., Lemma 2.2) will be established in Section 4. We prove Corollary

1.2 and Corollary 1.3 in Section 3.

Acknowledgment: The author thanks Professor Xiaojun Huang who brought him to the field

and shared many insights. He also thanks Professors John D’Angelo and Peter Ebenfelt for many

inspiring conversations.
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2. Proof of Theorem 1

In this section, we give a proof of Theorem 1. As was mentioned, we will reduce it to a mapping

problem between complex quadrics in Pm × Pm. We recall the following result (Lemma 2.1) due to

Chern-Ji (See [CJ1], [CJ2]), which is a well-known generalization of Poincaré type theorem to Segre

families. Let [z] = [z0, · · · , zm] ∈ Pm and [ξ] = [ξ0, · · · , ξm] ∈ Pm. Let M⊆ Pm × Pm be defined by

M := {([z], [ξ]) ∈ Pm × Pm :
m∑
j=0

zjξj = 0}.

Lemma 2.1. (Lemma 3.1 in [CJ2]) Let U, Ũ and V, Ṽ be connected open subsets of Pmz and Pmξ (m ≥
2), respectively. Assume (U × V ) ∩M 6= ∅. If f : U → Ũ and g : V → Ṽ are biholomorphic maps

such that

f × g ((U × V ) ∩M) ⊆M,

then f and g are restrictions of elements of PGL(m+ 1,C).

This result is, however, not sufficient for our application to prove Theorem 1. We will need Lemma

2.2, which is a more general version of Lemma 2.1. It proves a Poincaré type result for holomorphic

maps from a degenerate complex quadric. See other types of generalization of Lemma 2.1 in [Zh]

and references therein.

Write w = (w0, · · · , wm−1) ∈ Cm, and η = (η0, · · · , ηm−1) ∈ Cm. And define

M0 =

(w, η) ∈ Cm × Cm :
m−1∑
j=1

wjηj + 1 = 0

 ;

M1 =

(w, η) ∈ Cm × Cm :
m−2∑
j=1

wjηj + wm−1 + ηm−1 = 0

 .

NoteM0 andM1 are degenerate in the sense that their defining functions do not depend on w0, η0.

Write ξ = (ξ1, · · · , ξm−1) and τ = (τ1, · · · , τm−1). Set

M̂0 =

(χ, τ) ∈ Cm−1 × Cm−1 :

m−1∑
j=1

χjτ j + 1 = 0

 ;

M̂1 =

(χ, τ) ∈ Cm−1 × Cm−1 :
m−2∑
j=1

χjτ j + χm−1 + τm−1 = 0

 .

We are now in a position to formulate Lemma 2.2.

Lemma 2.2. (a). Let U ⊆ Cmw , V ⊆ Cmη (m ≥ 3) be connected open subsets of Cm with (U×V )∩M0 6=
∅. Let f(w) = (f1(w), · · · , fm−1(w)), g(η) = (g1(η), · · · , gm−1(η)) be holomorphic maps in U and V

respectively. Assume f, g are nondegenerate in (w1, · · · , wm−1) and (η1, · · · , ηm−1), respectively. That

is, the matrices
(
∂fi
∂wj

)
1≤i≤m−1,1≤j≤m−1

and
(
∂gi
∂ηj

)
1≤i≤m−1,1≤j≤m−1

are nondegenerate everywhere in
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U and V , respectively. Assume f × g sends M0 ∩ (U × V ) to M̂0. Then f, g do not depend on the

variables w0 and η0, respectively. Moreover, f, g extend to holomorphic linear fractional maps in

(z1, · · · , zm−1) and (ξ1, · · · , ξm−1), respectively.

(b). The statement in part (a) still holds if M0 is replaced by M1 or M̂0 is replaced by M̂1.

We will postpone the proof of Lemma 2.2 to Section 4 and concentrate on the proof of Theorem

1 here. For that we first need to establish the following key proposition for the polynomial case.

Proposition 2.1. Let z = (z1, · · · , zm),m ≥ 3. Let ψ(z) = (ψ1, · · · , ψm) and φ(z) = (φ1, · · · , φm)

be holomorphic polynomial map from Cm to Cm. Assume A(z, z) is a polynomial in (z, z) such that

A(z, z)|z|2l =
m∑
j=1

ψj(z)φj(z). (2.1)

If A(z, z) 6≡ 0, then there exist holomorphic polynomials h1(z), h2(z) and B,C ∈ GL(m,C) with

BC
t

= Il,m, such that A(z, z) = h1(z)h2(z), and

ψ(z) = h1(z)(z1, · · · , zm)B; φ(z) = h2(z)(z1, · · · , zm)C. (2.2)

Proof. We first prove Proposition 2.1 under the following additional assumption.

Assumption (*): Suppose ψj(0) = 0 and φj(0) = 0 for all 1 ≤ j ≤ m.

Recall a holomorphic map ϕ = (ϕ1, · · · , ϕm) defined near p ∈ Cm is called nondegenerate at p if

the Jacobian matrix
(
∂ϕi

∂zj

)
1≤i,j≤m

is invertible at p. We will proceed in two different cases.

Case I: We first suppose either ψ or φ is degenerate everywhere. Without loss of generality,

assume ψ is degenerate everywhere. Then it follows from Huang’s proof of his original lemma (see

Lemma 3.2 in [Hu]) that A(z, z) ≡ 0 . For the self-containedness of this paper, we sketch a proof

here. Write ξ = (ξ1, · · · , ξm). We first complexify (2.1) to obtain

A(z, ξ)〈z, ξ〉l =
m∑
j=1

ψj(z)φj(ξ), ∀z, ξ ∈ Cm. (2.3)

Note we can assume ψj 6≡ 0 for every j (Otherwise, it is reduced to the case of Huang’s original

lemma, i.e., Lemma 3.2 in [Hu]). Then by the degeneracy of ψ, we can find some point z = p near 0

such that

(1). ψj(p) = εj 6= 0 for at least one j; and

(2). Vp = {z ≈ p : ψj(z) = ψj(p), ∀ 1 ≤ j ≤ m} defines a complex variety of dimension at least 1

near p.

Since ψj(0) = 0 and εj 6= 0, we see Vp cannot contain any complex line passing through the

origin. Hence there is a point p∗ ∈ Vp such that Vp contains a complex curve C∗ near p∗ which is

parametrized by an equation of the form:

z(t) = p∗ + vt+ o(t). (2.4)
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Here {p∗, v} are independent vectors and |t| < 1. Note for each z ∈ C∗ and ξ with 〈z, ξ〉l = 0, by

(2.3) we have
∑m

j=1 εjφj(ξ) = 0. Also (2.4) implies all such ξ fill in an open subset of Cm. We see∑m
j=1 εjφj(z) ≡ 0. Then (2.1) is reduced to

A(z, z)|z|2l =
m−1∑
j=1

(
ψj(z)−

εj
εm
ψm(z)

)
φj(z).

Then it follows from Lemma 3.2 in [Hu] that A(z, z) ≡ 0. This contradicts with the assumption.

Case II: We then suppose both ψ and φ are of generically full rank. Equivalently, at a generic

point z0 (respectively, a generic ξ0), ψ (respectively, φ) is a local biholomorphism. Assume A(z, z)

has bidegree (d0, d1) in (z, z) i.e., the highest degree in z (respectively, in z) equals d0 (respectively,

equals d1). Write d2 = max{d0, d1}. Assume the highest degree of ψj(z) and φj(z), 1 ≤ j ≤ m, is d̂2.

Then d̂2 ≥ d2 + 1. Write d = d̂2− 1. Write z̃ = (z0, z) ∈ C×Cm and set Â(z̃, z̃) = |z0|2dA( zz0 ,
z
z0

) and

ψ̂j(z̃) = zd+1
0 ψ( zz0 ), φ̂j(z̃) = zd+1

0 φ( zz0 ) for all j. Note Â(z̃, z̃) and ψ̂j(z̃), φ̂j(z̃) are all homogeneous

polynomials. Moreover, by homogenizing (2.1), we obtain

Â(z̃, z̃)|z|2l =

m∑
j=1

ψ̂j(z̃)φ̂j(z̃).

Writing ξ̃ = (ξ0, ξ) = (ξ0, ξ1, · · · , ξm) ∈ C× Cm, we complexify the above equation to get

Â(z̃, ξ̃)〈z, ξ〉l =

m∑
j=1

ψ̂j(z̃)φ̂j(ξ̃), z̃, ξ̃ ∈ Cm+1. (2.5)

Write ψ̂ = (ψ̂1, · · · , ψ̂m) and φ̂ = (φ̂1, · · · , φ̂m). Since ψ(z) and ψ(ξ) are of generically full rank,

we see that ψ̂ and φ̂ have the following property.

Nondegeneracy Property : For any fixed z∗0 6= 0, ψ̂(z∗0 , z) is of generically full rank in z near 0; for

any fixed ξ∗0 6= 0, φ̂(ξ∗0 , ξ) is of generically full rank in ξ.

In particular, the nondegeneracy property implies every ψ̂j and φ̂j are not identically zero. Write

N = {(z̃, ξ̃) ∈ Cm+1 × Cm+1 : 〈z, ξ〉l = 0}. Pick some small open subsets G ⊆ Cm+1
z̃ ,W ⊆ Cm+1

ξ̃

such that ψ̂m(z̃) 6= 0 in G and φ̂m(ξ̃) 6= 0 in W , and N ∩ (G ×W ) 6= ∅. We can also assume G

does not intersect with {z0zm = 0} and W does not intersect with {ξ0ξm = 0}. Moreover, by the

nondegeneracy property, shrinking G and W if necessary, we can assume the following hold:

The map ( ψ̂1

ψ̂m
, · · · , ψ̂m−1

ψ̂m
, ψ̂m)(z̃) is of full rank in z = (z1, · · · , zm) everywhere in G; and the map

( φ̂1
φ̂m
, · · · , φ̂m−1

φ̂m
, φ̂m)(ξ̃) is of full rank in ξ = (ξ1, · · · , ξm) everywhere in W .
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Consequently, writing ψ̃i = ψ̂i

ψ̂m
for 1 ≤ i ≤ m− 1, the rank of

(
∂ψ̃j

∂zk

)
1≤i≤m−1,1≤k≤m

equals m− 1

in G. Hence, shrinking G if necessary, there exists some 1 ≤ j1 ≤ m, such that(
∂ψ̃i
∂zk

)
1≤i≤m−1,1≤k 6=j1≤m

is nondegenerate everywhere in G. (2.6)

Similarly, We write φ̃ = φ̂i
φ̂m

for 1 ≤ i ≤ m−1. By shrinking W if necessary, there is some 1 ≤ j2 ≤ m,
such that (

∂φ̃j
∂zk

)
1≤j≤m−1,1≤k 6=j2≤m

is nondegenerate everywhere in W. (2.7)

Now set

Ψ(z̃) = (ψ̃1(z̃), · · · , ψ̃m−1(z̃), 1), for z̃ ∈ G; Φ(ξ̃) = (φ̃1(ξ̃), · · · , φ̃m−1(ξ̃), 1), for ξ̃ ∈W.

We have the following claim:

Claim: The maps Ψ(z̃) and Φ(ξ̃) are independent of the variables z0 and ξ0, respectively. More-

over, they are linearly fractional in z and ξ, respectively.

Proof of Claim: We have two cases depending on whether j1 and j2 are equal. We will only prove

for the case j1 = j2 and the proof of the other case is similar. Without loss of generality, assume

j1 = j2 = m. By rescaling G and W , we can assume {zm = 1} × {ξm = 1} intersects N ∩ (G×W ).

Write G0 = {[z̃] = [z0, · · · , zm] ∈ Pm : (z0, · · · , zm) ∈ G}, and W0 = {[ξ̃] = [ξ0, · · · , ξm] ∈ Pm :

(ξ0, · · · , ξm) ∈W}. Notice by homogeneity, Ψ (respectively, Φ) induces a map [Ψ] (respectively, [Φ])

from G0 (respectively, from W0) to Pm. Moreover, by (2.5) we see

Â(z̃, ξ̃)〈z, ξ〉l = ψ̃m(z̃)φ̃m(ξ̃)〈Ψ(z̃),Φ(ξ̃)〉 for z̃ ∈ G, ξ̃ ∈W.

Consequently, [Ψ] × [Φ] maps an open piece of H to M̂. Here H = {([z̃], [ξ̃]) ∈ Pm × Pm :

〈z, ξ〉l =
∑m

j=1 δj,lzjξj = 0}, and M̂ = {([χ], [τ ]) ∈ Pm−1 × Pm−1 :
∑m

j=1 χjτj = 0} with

[χ] = [χ1, · · · , χm], [τ ] = [τ1, · · · , τm].

Note G0 and W0 are contained in the affine cells {[z̃] : zm 6= 0} ⊂ Pm and {[ξ̃] : ξm 6= 0} ⊂ Pm,
respectively. We will use the standard nonhomogeneous coordinates on these affine cells:

(z0, · · · , zm−1)→ [z0, · · · , zm−1, 1]; and (ξ0, · · · , ξm−1)→ [ξ0, · · · , ξm−1, 1].

Moreover, the images of G0 and W0 under [Ψ] and [Φ], are contained in the affine cells {[χ] : χm 6= 0}
and {[τ ] : τm 6= 0}, respectively. We again use the standard nonhomogeneous coordinates on these

affine cells:

(χ1, · · · , χm−1)→ [χ1, · · · , χm−1, 1]; and (τ1, · · · , τm−1)→ [τ1, · · · , τm−1, 1].

We still denote the maps by Ψ and Φ in these local coordinates. Then (Ψ,Φ) maps (an open

piece of) H0 = {(z0, · · · , zm−1), (ξ0, · · · , ξm−1) :
∑m−1

j=1 δj,lzjξj + δm,l = 0} ⊂ Cm × Cm to M̂0 =

{
∑m−1

j=1 χjτj + 1 = 0} ⊂ Cm−1 ×Cm−1. Moreover, by (2.6) and (2.7), Ψ and Φ are nondegenerate in
9



(z1, · · · , zm−1) and (ξ1, · · · , ξm−1), respectively. Then it follows from Lemma 2.2 (Note we can apply

a linear change of coordinates in z to transform H0 intoM0 and therefore reduce it to the setting of

Lemma 2.2) that Ψ and Φ are independent of the variables z0 and ξ0, respectively, and they are linear

fractional in z and ξ. Hence we obtain the desired conclusion. If j1 6= j2, say j1 = m − 1, j2 = m, a

similar argument together with Lemma 2.2 will also yield the conclusion. This finishes the proof of

the claim.

It follows from the above claim and the nondegeracy condition (2.6) that there are some matrix

B ∈ GL(m;C) and a (nonzero) linear function L1(z) in z such that (ψ̃1(z̃), · · · , ψ̃m−1(z̃), 1) equals
1

L1(z)(z1, · · · , zm)B (By the above claim, Ψ does not depend on z0). Consequently, we have

L1(z)(ψ̂1(z̃), · · · , ψ̂m(z̃)) = ψ̂m(z̃)(z1, · · · , zm)B, ∀z̃ ∈ Cm+1. (2.8)

Similarly, there exists some matrix C ∈ GL(m;C) and some nonzero linear function L2(ξ) in ξ such

that

L2(ξ)(φ̂1(ξ̃), · · · , φ̂m(ξ̃)) = φ̂m(ξ̃)(ξ1, · · · , ξm)C, ∀ξ̃ ∈ Cm+1. (2.9)

It then follows that

L1(z)L2(ξ)

m∑
j=1

ψ̂j(z̃)φ̂j(ξ̃) = ψ̂m(z̃)φ̂m(ξ̃)(z1, · · · , zm)BCt(ξ1, · · · , ξm)t.

By (2.5), the above quantity vanishes on 〈z, ξ〉l = 0. This implies BCt = λIl,m for nonzero λ. By

choosing a different L1, we can make λ = 1. Consequently,

L1(z)L2(ξ)

m∑
j=1

ψ̂j(z̃)φ̂j(ξ̃) = ψ̂m(z̃)φ̂m(ξ̃)〈z, ξ〉l.

Combining this with (2.5), we obtain for all z̃, ξ̃ ∈ Cm+1,

L1(z)L2(ξ)Â(z̃, ξ̃)〈z, ξ〉l = ψ̂m(z̃)φ̂m(ξ̃)〈z, ξ〉l.

The above is then reduced to

L1(z)L2(ξ)Â(z̃, ξ̃) = ψ̂m(z̃)φ̂m(ξ̃), ∀z̃, ξ̃ ∈ Cm+1. (2.10)

Note (2.10) implies that ψ̂m(z̃) vanishes on {L1(z) = 0}. This further implies there is some holo-

morphic polynomial p1(z̃) such that ψ̂m(z̃) = L1(z)p1(z̃). Similarly, we have φ̂m(ξ̃) vanishes on

{L2(ξ) = 0}, and φ̂m(ξ̃) = L2(ξ)p2(ξ̃) for some holomorphic polynomial p2(ξ̃). Then it follows from

(2.10) that Â(z̃, z̃) = p1(z̃)p2(z̃). Finally we let z0 = 1 and write h1(z) = p1(1, z), h2(ξ) = p2(1, ξ) to

obtain that A(z, z) = h1(z)h2(z). Furthermore, (2.8) and (2.9) are reduced to

(ψ̂1(z̃), · · · , ψ̂m(z̃)) = p1(z̃)(z1, · · · , zm)B; (φ̂1(ξ̃), · · · , φ̂m(ξ̃)) = p2(ξ̃)(ξ1, · · · , ξm)C.

We again let z0 = 1 and ξ0 = 1 to get

(ψ1(z), · · · , ψm(z)) = h1(z)(z1, · · · , zm)B; (φ1(ξ), · · · , φm(ξ)) = h2(ξ)(ξ1, · · · , ξm)C.
10



This finishes the proof of Proposition 2.1 under the additional assumption (*).

To prove Proposition 2.1 in the general case, we multiple |z1|2 to both sides of (2.1) and obtain:

A∗(z, z)|z|2l =
m∑
j=1

ψ∗j (z)φ
∗
j (z).

Here A∗(z, z) = |z1|2A(z, z) and ψ∗j (z) = z1ψj(z), φ
∗
j (z) = z1φj(z) for all 1 ≤ j ≤ m. Then ψ∗ and

φ∗ satisfy the assumption (*). By what we have proved, we see there exist holomorphic polynomials

h∗1(z), h∗2(z) and B∗, C∗ ∈ GL(m,C) with B∗C∗
t

= Il,m, such that A∗(z, ξ) = h∗1(z)h∗2(ξ), and

ψ∗(z) = h∗1(z)zB∗; φ∗(z) = h∗2(z)zC∗.

Since A∗(z, ξ) = 0 on {z1 = 0} and on {ξ1 = 0}, we have h∗1(z) = z1h1(z) and h∗2(z) = z1h2(z) for

some polynomials h1 and h2. Consequently, A(z, ξ) = h1(z)h2(ξ), and

ψ(z) = h1(z)zB∗; φ(z) = h2(z)zC∗.

This proves Proposition 2.1 in the general case.

�

Finally we apply Proposition 2.1 to derive Theorem 1.

Proof of Theorem 1: We first fix some notations. We set, for k, j ≥ 0, A(k,j)(z, z) to be the

truncated Taylor polynomial of A(z, z) to the order (k, j) in (z, z). More precisely, writing A(z, z) =∑
|α|,|β|≥0 aαβz

αzβ near 0, let A(k,j)(z, z) equal to the sum of terms aαβz
αzβ with |α| ≤ k, |β| ≤ j.

Similarly for k ≥ 0, we set ψ(k)(z) and φ(k)(z) to be truncated Taylor polynomials at degree k of

ψ(z) and φ(z), respectively. Then it follows from the assumption (1.2) that

A(d,d)(z, z)|z|2l =
m∑
j=1

ψ(d+1)(z)φ(d+1)(z). (2.11)

Since A(z, z) 6≡ 0, we have A(d,d)(z, z) 6≡ 0 for sufficiently large d. We conclude by Proposition

2.1 that, for every sufficiently large d, there are holomorpihc polynomials h1,d h2,d, and Bd, Cd ∈
GL(m,C) with BdCd = Il,m, such that

A(d,d)(z, z) = h1,d(z)h2,d(z) (2.12)

ψ(d+1)(z) = h1,d(z)(z1, · · · , zm)Bd; φ(d+1)(z) = h2,d(z)(z1, · · · , zm)Cd. (2.13)

We pick a small open ball U centered at 0 in Cm such that A(d,d)(z, ξ) converges uniformly to

A(z, ξ) in U × U, and ψ(d+1)(z) (respectively, φ(d+1)(z)) converges uniformly to ψ(z) (respectively,

φ(z)) on U . Consequently, {A(d,d)(z, ξ)}∞d=1 is uniformly bounded on U × U. Since A(z, z) is not

identically zero, there exists some z∗ ∈ U such that A(z∗, z∗) = c0 6= 0. We can normalize h1,d and

h2,d such that |h1,d(z
∗)| ≥ |c0|2 and h2,d(z

∗) = 1 for every sufficiently large d. We complexify (2.12) to

obtain

A(d,d)(z, ξ) = h1,d(z)h2,d(ξ), for (z, ξ) ∈ U × U. (2.14)
11



We set ξ = z∗ in the above equation to see {h1,d(z)}∞d=1 is uniformly bounded on U . Similarly,

{h2,d(z)}∞d=1 is also uniformly bounded on U . By Montel’s theorem, passing to a subsequence if

necessary, we can assume h1,d(z) and h2,d(z) converge uniformly on compact subsets of U . Denote

their limits by h1(z), h2(z), respectively, which are holomorphic functions on U . We then let d→∞
in (2.12) to see A(z, z) = h1(z)h2(z) near 0. Note by normalization, h2(z∗) = 1 and h1(z∗) = c0 6= 0.

Next since h1,d, h2,d converge to h1, h2, respectively, uniformly on compact subsets of U , we can

then find a small ball B(z∗, r) ⊂⊂ U of radius r centered at z∗ such that |h1,d(z)| ≥ |c0|
2 and

|h2,d(z)| ≥ 1
2 in B(z∗, r) for all sufficiently large d. Since ψ(d+1)(z) also converges to ψ(z) uniformly

on B(z∗, r), we see {ψ(d+1)(z)}∞d=1 is uniformly bounded on B(z∗, r). It then follows from (2.13) that

{zBd = (z1, · · · , zm)Bd}∞d=1 is uniformly bounded on z ∈ B(z∗, r). This implies {Bd}∞d=1 is bounded

in GL(m,C). A similar argument yields that {Cd}∞d=1 is also bounded in GL(m,C). Thus by passing

to subsequences if necessary, we can assume Bd, Cd converge to B,C, respectively. Since BdCd = Il,m,

we have BC = Il,m and thus B,C ∈ GL(m,C). We finally let d→∞ in (2.13) to obtain the last two

equations in Theorem 1. This finishes the proof of Theorem 1.

To see the conclusion in Remark 1.1, we assume A(z, z) is real-valued and need to show that

h1h2 = ±|h|2 for some holomorphic function h near 0. This follows easily from the elementary

lemma:

Lemma 2.3. Let h1, h2 be holomorphic functions on an open connected set U ⊆ Cn. Assume h1h2

is real-valued in U , then h1 ≡ 0 or h2 = ch1 for some real number c.

Proof of Lemma 2.3: Note by assume h1h2 = h1h2. If h1 is not identically zero, then we

can divide by |h1|2 at a generic point z ∈ U. Then the conclusion follows from elementary complex

analysis.

3. Proof of Corollary 1.2 and Corollary 1.3

We will apply Corollary 1.1 in [HLTX1] to prove Corollary 1.2. Recall Theorem 1 in [HLTX1]

implies that, under the setting of Corollary 1.2, F is an isometric embedding if and only if F is CR

transversal at F (q) for some point q ∈ U ∩∂Bnl and F has zero geometric rank near q along U ∩∂Bnl .
See [HLTX1] for the definition of the geometric rank of a CR transversal map from ∂Bnl to ∂BNl′ .
Note by the assumption of Corollary 1.2, we have either l′ < n − 1 or 2n − 2 − l′ < n − 1. Then it

already follows from Lemma 4.1 of [BH] (or Theorem 1.1 in [BER]) that F is CR transversal at F (q)

for a generic point q ∈ U ∩ ∂Bnl . Fix such a point q = q0. By the proceeding argument, to establish

Corollary 1.2, it suffices to show F has zero geometric rank near q0.

Proposition 3.1. The map F has zero geometric rank near q0 along U ∩ ∂Bnl .

We first recall certain notations and terminologies which will be used in the proof of Proposition

3.1. Let δj,l and | · |2l be as defined in §1 (see the paragraph above Theorem 1). Assume l′ ≥ l. We

denote by δj,l,l′,n the symbol which takes value -1 when 1 ≤ j ≤ l or n ≤ j ≤ n + l′ − l − 1 and 1
12



otherwise. When l′ = l, δj,l,l,n is the same as δj,l. For 0 ≤ l ≤ n− 1, we define the generalized Siegel

upper-half space

Snl = {(z, w) ∈ Cn−1 × C : Im(w) >
n−1∑
j=1

δj,l|zj |2}.

The boundary of Snl is the standard hyperquadrics Hn
l given by Im(w) =

∑n−1
j=1 δj,l|zj |2. We also

define for l ≤ l′ ≤ N − 1,

SNl,l′,n = {(Z,W ) ∈ CN−1 × C : Im(W ) >
N−1∑
j=1

δj,l,l′,n|Zj |2}.

We similarly define SNl′ ,H
N
l′ ,H

N
l,l′,n. Now for (z, w) = (z1, ···, zn−1, w) ∈ Cn, let Ψ(z, w) = [i+w, 2z, i−

w] ∈ Pn. Then Ψ is the Cayley transformation which biholomorphically maps the generalized Siegel

upper-half space Snl and its boundary Hn
l onto Bnl \{[z0, · · ·, zn] : z0 + zn = 0} and ∂Bnl \{[z0, · · ·, zn] :

z0 + zn = 0}, respectively.

Proof of Proposition 3.1: By composing F with automorphisms of Bnl and B2n−1
l′ if necessary,

we assume q0 = [1, 0, · · · , 0, 1] ∈ ∂Bnl and F (q0) = [1, 0, · · · , 0, 1] ∈ ∂B2n−1
l′ . Recall Ψ is the afore-

mentioned Cayley transformation from Snl to Bnl with Ψ(0) = q0, and we denote by Φ the Cayley

transformation from S2n−1
l,l′,n to B2n−1

l′ . Write F̃ := Φ−1 ◦F ◦Ψ. By the definition of the geometric rank

(See Section 3 in [HLTX1]), F̃ is of geometric rank zero at p if and only if F is so at Ψ(p). Thus it

suffices to prove the new map F̃ has zero geometric rank near 0. To make the notations simple, we

still write the new map as F instead of F̃ . That is, F is now a holomorphic map from a neighborhood

V of some point p0 = 0 ∈ Hn
l to C2n−1, satisfying F (V ∩ Snl ) ⊆ S2n−1

l,l′,n and F (V ∩ Hn
l ) ⊆ H2n−1

l,l′,n .

Shrinking V if necessary, we additionally assume M1 := V ∩Hn
l is connected and F is CR transversal

on M1. Next for each p ∈ M1, we associate it with a map Fp defined as in [BH, HLTX1]. See (3.2)

in [HLTX1]. Furthermore, we normalize Fp into F ∗p , F
∗∗
p as defined in (3.9) and (3.13) of [HLTX1],

respectively. As in [HLTX1], F ∗∗p sends 0 to 0, and maps Hn
l (respectively, Snl ) to HN

l,l′,n(respectively,

S2n−1
l,l′,n ) near 0.

We now pause to recall some notations for functions of weighted degree from [Hu, BH].We param-

eterize Hn
l by (z, z, u) through the map (z, z, u)→ (z, u+ i

∑n−1
j=1 δj,l|zj |2). We assign the weight of z

to be 1, and assign the weight of u (and thus w) to be 2 . For a smooth function h(z, z̄, u) defined in

a neighborhood W of 0 in Hn
l , we say it is of quantity Owt(s) for 0 ≤ s ∈ N, if h(tz,tz̄,t2u)

ts is bounded

for (z, u) on any compact subset of W and t close to 0. Moreover, for a smooth function h(z, z̄, u)

on W , we denote by h(k)(z, z̄, u) the sum of terms of weighted degree k in the Taylor expansion of h

about 0. And h(k)(z, z̄, u) also sometimes denotes a weighted homogeneous polynomial of degree k,

if h is not specified. When h(k)(z, z̄, u) extends to a holomorphic polynomial of weighted degree k,

we write it as h(k)(z, w) or h(k)(z) if it depends only on z.

Write F ∗∗p = (f∗∗p , φ
∗∗
p , g

∗∗
p ), where f∗∗p , φ

∗∗
p both have n−1 components, and g∗∗p is a scaler function.

Under the notations above, F ∗∗p satisfies the following normalization by [BH].
13



Lemma 3.1. (Lemma 2.2 in [BH]) Write (z, w) = (z1, · · · , zn−1, w) for the coordinates of Cn. For

each p ∈M1, F ∗∗p satisfies the normalization condition:
f∗∗p = z + i

2a
∗∗(1)
p (z)w +Owt(4)

φ∗∗p = φ
∗∗(2)
p (z) +Owt(3)

g∗∗p = w +Owt(5),

with

〈z̄, a∗∗(1)
p (z)〉l|z|2l = |φ∗∗(2)

p (z)|2τ , τ = l′ − l. (3.1)

If we write a
∗∗(1)
p (z) = zA(p) for an (n− 1)× (n− 1) matrix A(p), then by [HLTX1] the geometric

rank of F at p is defined as the rank of the matrix A(p). Set Ap(z, z) = 〈z̄, a∗∗(1)
p (z)〉l, which is a real

polynomial. By (3.1), we have

Ap(z, z)|z|2l = |φ∗∗(2)
p (z)|2τ .

Note φ
∗∗(2)
p (z) has n−1 components and by the assumption of Corollary 1.2, τ 6= l and τ 6= n−1− l.

Then by Corollary 1.1, we have Ap(z, z) = 0 and thus F has geometric rank zero at p. Since p is

arbitrary, we conclude F has zero geometric rank near 0, and finish the proof of Proposition 3.1.

Remark 3.1. When l = 0 or l = n−1, we indeed don’t need to use the full generality of Corollary 1.1

to conclude Ap(z, z) = 0 in the above. Instead it suffices to use a much weaker version of Corollary

1.1 where a′is and b′js are assumed to be quadratic homogeneous polynomials. For that the readers

are referred to the proof of Lemma 3.1 in [HJ] and we omit the details here.

Proof of Corollary 1.2: The result follows from Theorem 1 in [HLTX1] and Proposition 3.1.

We next prove Corollaries 1.3.

Proof of Corollary 1.3: First since F extends Cn−1−smoothly up to some open piece of the

boundary, we conclude by Theorem 3 in [X] that F is algebraic. Consequently F extends holomor-

phically across a generic boundary point p ∈ ∂Bn. And we can find a small neighborhood U of p

such that U ∩ Bn is connected, F (U ∩ Bn) ⊆ DIV
2n−2 and F (U ∩ ∂Bn) ⊆ ∂DIV

2n−2. Then Corollary 1.3

follows from Corollary 1.2 and an identical argument as in the proof of Theorem 1.1 in [XY1]. This

establishes Corollary 1.3.

4. Proof of Lemma 2.2

We prove Lemma 2.2 in this section. We first note the following linear fractional map gives a local

biholomorphic map from M1 to M0 :

ŵ0 = w0, ŵi =

√
2wi

wm−1 + 1
, 1 ≤ i ≤ m− 2, ŵm−1 =

1− wm−1

wm−1 + 1
;

14



η̂0 = η0, η̂i =

√
2ηi

ηm−1 + 1
, 1 ≤ i ≤ m− 2, η̂m−1 =

ηm−1 − 1

ηm−1 + 1
.

Similarly, M̂0 and M̂1 are locally biholomorphic by a linear fractional map. Thus it suffices to

prove Lemma 2.2 only for the map f × g from M1 to M̂0. We fix a point (p, q) ∈ M1 ∩ (U × V ).

Note that (0, 0) ∈ M1 and there is a biholomorphic map (ϕ1(w), ϕ2(η)) in a neighborhood of (0, 0)

that sends (0, 0) to (p, q) and maps an open piece of M1 near (0, 0) to M1 ∩ (U × V ). Indeed,

writing p = (p0, p
′, pm−1) = (p0, p1, · · · , pm−2, pm−1), q = (q0, q

′, qm−1) = (q0, q1, · · · , qm−2, qm−1),

and w′ = (w1, · · · , wm−2), η′ = (η1, · · · , ηm−2), we can take

ϕ1(w) = (w0 + p0, w
′+ p′, wm−1 + pm−1−〈w′, q′〉); ϕ2(η) = (η0 + q0, η

′+ q′, ηm−1 + qm−1−〈η′, p′〉).

Hence, by composing f, g with ϕ1, ϕ2 if necessary, we can just assume (p, q) = (0, 0). For η =

(η0, · · · , ηm−1), write Lηi = ∂
∂wi
− ηi ∂

∂wm−1
, 1 ≤ i ≤ m− 2. Then {Lηi }

m−2
i=1 gives a set of holomorphic

tangent vector fields along M1. Set

Dη(w) :=

∣∣∣∣∣∣∣∣∣
f

Lη1f

· · ·
Lηm−2f

∣∣∣∣∣∣∣∣∣ .
Here | · | denotes the determinant of a square matrix. Note Dη(w) is independent of η0. We will show

the following nondegeneracy property of Dη(w).

Lemma 4.1. There exists (p∗, q∗) ∈M1 ∩ (U × V ) such that Dη(w) 6= 0 at (w, η) = (p∗, q∗).

Proof. By the definitions of Dη(w) and Lηi , 1 ≤ i ≤ m − 2, we see Dη(w) is linear in each ηi. More

precisely, Dη(w) = −
∑m−2

i=1 Bi(w)ηi +B0(w). Here

B0(w) =

∣∣∣∣∣∣∣∣∣
f(w)
∂f
∂w1

(w)

· · ·
∂f

∂wm−2
(w)

∣∣∣∣∣∣∣∣∣ (4.1)

and for each 1 ≤ i ≤ m − 2, Bj(w) equals the determinant in (4.1) with the (j + 1)−st row (i.e.,
∂f(w)
∂wj

) replaced by ∂f(w)
∂wm−1

.

Recall by assumption of Lemma 2.2, if we write B(w) =

∣∣∣∣∣∣∣
∂f
∂w1

(w)

· · ·
∂f

∂wm−1
(w)

∣∣∣∣∣∣∣ , then B(w) is everywhere

nonzero in U .

Claim: There is some 0 ≤ j0 ≤ m− 2, such that Bj0(w) 6≡ 0.

Proof of Claim: Suppose Bj(w) ≡ 0 for all 0 ≤ j ≤ m − 2. Then by the fact that B(w) 6= 0 in

U and Lemma 4.7 in [BX], we conclude f ≡ 0 in U . This is a contradiction.
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By the claim, we can find some 0 ≤ j0 ≤ m − 2, and some p∗ = (p∗0, · · · , p∗m−1) near 0 such that

Bj0(p∗) 6= 0. If j0 6= 0, then we can find a number η∗j0 ≈ 0 such that Bj0(p∗)η∗j0 + B0(p∗) 6= 0. Set

q∗ = (0, 0, · · · , 0, η∗j0 , 0, · · · , 0,−p
∗
m−1 − p∗j0η

∗
j0

) ∈ Cm, where η∗j0 is at the (j0 + 1)−st position. Then

we have (p∗, q∗) ∈M1 and Dq∗(p
∗) 6= 0. If j0 = 0, then we can find some p∗ = (p∗0, · · · , p∗m−1) near 0

such that B0(p∗) 6= 0. Pick q∗ = (0, · · · , 0,−p∗m−1), so that (p∗, q∗) ∈ M1 and we have Dq∗(p
∗) 6= 0.

This proves Lemma 4.1. �

By Lemma 4.1, we can shrink U, V and assume Dη(w) is everywhere nonzero in U × V. By as-

sumption, we have

〈f(w), g(η)〉 = −1 on M1 ∩ (U × V ). (4.2)

We then apply Lηi , 1 ≤ i ≤ m− 2, to (4.2) and obtain

〈Lηi f(w), g(η)〉 = 0 on M1 ∩ (U × V ), 1 ≤ i ≤ m− 2. (4.3)

Fix p = (p0, · · · , pm−1) ∈ U near p∗. Write Qp = {η ∈ Cm :
∑m−2

j=1 pjηj + pm−1 + ηm−1 = 0}. Putting

together equations (4.2) and (4.3) and evaluating at w = p, we get
f(p)

Lη1f(p)

· · ·
Lηm−2f(p)

 gt(η) =


−1

0

· · ·
0

 , η ∈ Qp ∩ V. (4.4)

Here gt denotes the column vector-valued function obtained by taking the transpose of g. Note
∂
∂η0

is tangent to Qp. We apply ∂
∂η0

to (4.4) to get
f(p)

Lη1f(p)

· · ·
Lηm−2f(p)

 ∂gt

∂η0
(η) =


0

0

· · ·
0

 , η ∈ Qp ∩ V.

Since Dη(p) 6= 0, the matrix on the left hand side of the above equation is nondegenerate. Hence

we must have ∂g
∂η0

(η) = 0 for η ∈ Qp ∩ V. Note that we can vary p near p∗ and Qp will fill in an open

subset of Cmη . This implies ∂g
∂η0
≡ 0 in V and thus g is independent of η0. Similarly, we can prove f

is independent of w0. Once we know that f and g only depende on the variables w1, · · · , wm−1 and

η1, · · · , ηm−1, respectively, it is reduced to the case where the original result of Chern-Ji (Lemma

2.1) can be applied. We thus see the fractional linearity of f and g. This proves Lemma 2.2.
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