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Abstract

We prove a smooth version of the classical Schwarz reflection principle for CR
mappings between an abstract CR manifold M and a generic CR manifold embedded in
euclidean complex space. As a consequence of our results, we settle a conjecture of
X. Huang formulated in [Hu2].

Introduction

In this paper we study the regularity problem for CR mappings between CR manifolds where

the CR dimension of the source manifold is less than or equal to that of the target manifold.
Our results imply a positive answer to a conjecture of X. Huang in [Hu2] and provide a solution

to a question raised in [Frl] (see Corollaries 2.10 and 2.11).

One of our theorems can be viewed as a smooth version of the analyticity theorems of

Forstneric ([Frl]) and Huang [Hul-2] for CR mappings between CR manifolds of differing

dimensions. The article is devoted to results along the line of research on establishing the
smooth version of the Schwarz reflection principle for holomorphic maps in several variables.

Results of this type were first proved in the 70’s starting with the work of Fefferman [Fe|, Lewy
[Le] and Pinchuk [Pi]. The seminal work [BJT] has influenced a lot of work on the subject. For

*Work supported in part by NSF DMS 1300026



S. Berhanu, Ming Xiao

extensive surveys and many references on this research, the reader may consult the articles by
Bedford [Be|, Forstneric [Fr2], and Bell-Narasimhan [BN]. Among the many related papers we
mention here [CKS], [CGS], [CS], [DW], [EH], [EL], [Frl], [Fr3], [Hul], [Hu2], [KP], [K], [Lal],
[La2], [La3], [M], [NWY], [Tu], and [W]. In [Fr3] Forstneric generalized Fefferman’s theorem to
CR homeomorphisms f : M — M’ where f~!is CR, M and M’ are generic CR submanifolds
of C" with the same CR dimension. The book [BER] by Baouendi, Ebenfelt, and Rothschild
contains a detailed account and references related to the study when the manifolds are real
analytic or real algebraic.

We prove results on the smoothness of CR maps where the source manifold M is assumed
to be an abstract (not necessarily embeddable) CR manifold. We mention that the results are
new even when M is embeddable. Our first main result, Theorem 2.3, generalizes to abstract
CR manifolds a theorem of Lamel in [Lal] proved for generic CR manifolds embedded in
complex spaces. The second main result, Theorem 2.5, establishes the smoothness on a dense
open subset of a C* CR mapping F : (M,V) — (M',V') where (M,V) is an abstract CR,
manifold of CR dimension n and M’ C C"** is a hypersurface that is strongly pseudoconvex.
A condition on the Levi form of (M, V) is assumed in Theorem 2.5.

Our approach is based on the framework established by Roberts [GR] in his thesis and a
later paper by Lamel in [Lal]. The notion of ky—nondegeneracy of a CR mapping (Definition
2.1) and the “almost holomorphic” implicit function theorem of Lamel in [Lal] and [La2| play
crucial roles in the proofs and formulations of our results. The proof is also motivated by
the study of the real analyticity for CR maps between real analytic strongly pseudoconvex
hypersurfaces of different dimensions in Forstneric [Frl] and Huang [Hul]. We mention that
in [Fr1], Forstneric conjectured that ' must be real analytic when M; C C"™! and M, C
C"** (k > 2,n > 1) are real analytic hypersurfaces with M; of finite type, M, strongly
pseudoconvex, and he proved that this is indeed the case on a dense open set when F' is smooth.
The conjecture of Forstneric was settled by Huang ([Hul]) who obtained the analyticity of F
on a dense open subset assuming only that F' € C*. The analyticity of F, when both M; and
M, are as in [Fr1] and when F is only C*-smooth also follows from Theorem 2.5 in this paper
and Forstneric’s analyticity result when F'is smooth.

The paper is organized as follows. In Section 2 we state the main results and prove a
preliminary microlocal regularity result that is used in the proof of Theorem 2.5 and supplies
a good class of examples to which Theorem 2.3 can be applied. Section 3 contains the proof
of Theorem 2.3 and Theorem 2.5 is proved in Section 4. In an appendix we indicate why we
focus only on CR mappings where the target manifold has a higher CR dimension than that
of the source manifold.

Acknowledgement: We use this opportunity to thank the anonymous referee for his
helpful comments that have resulted in an improvement of the presentation of the results in
this paper. The second author expresses his gratefulness to his advisor Xiaojun Huang for his
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constant help and encouragement. He also thanks Xiaoshan Li for his interest and help in this
work.

2 Statements of the results and the proof of a
preliminary result

Let M be a smooth manifold and let V be a subbundle of CT'M, the complexified tangent
bundle of M. The pair (M,V) is called an abstract CR manifold if V is involutive and if for
each p € M, V, NV, = 0. Recall that the involutivity of ¥ means that the space of smooth
sections of V, C°(M, V), is closed under commutators. Let n be the complex dimension of the
fibers V, and write dimgM = 2n + d. The number n is called the CR dimension of M, and d
is called the CR codimension of M. If d = 1, the CR manifold is said to be of hypersurface
type. A smooth section of V is called a CR vector field and a function (or distribution) is
called CR if Lf = 0 for any CR vector field L. The CR manifold (M,V) is called locally

embeddable if for any py € M, there exist m complex-valued C'*° functions 71, - -- , Z,, defined
near pg with m = dimg M —n, such that the Z; are CR functions near py, and the differentials
dzy,--- ,dZ,, are C—linearly independent. In this case, the mapping

p= Z(p) = (Zi(p),- -+ . Zu(p)) € C™ = C"¢

is an immersion near py. Thus, if U is a small neighborhood of pg, then Z(U) is an embedded
submanifold of C™ and is a generic CR submanifold of C"™ whose induced CR bundle agrees
with the push forward Z.(V) (see [BER| and [J] for more details). Let (M’, V') be another
abstract CR manifold with CR dimension n’ and CR codimension d’. A CR mapping of class
C*k>1) H:(M,V)— (M',V')is a C* mapping H : M — M’ such that for each p € M,

dH(V,) C Vigg)-

When (M’, V') is a generic CR submanifold of CN' (N’ = n/ + d'), then a C* mapping
H = (Hy, - ,Hy) : M — M’ is a CR mapping if and only if each H; is a CR function.
One of our main results generalizes to an abstract CR manifold (M,V) a regularity theorem
of Lamel ([Lal]) for CR mappings of embedded CR manifolds. We need to recall from [Lal]
the notion of nondegenerate CR mappings. Let M c CN and M’ ¢ CV' be two generic CR
submanifolds of CY and CV " respectively. If d and d’ denote the real codimensions of M and
M’ then n = N —d and n’ = N’ — d' are the CR dimensions of M and M’ respectively. Let
H : M — M’ be a CR mapping of class C*.

Definition 2.1. (/Lal]) Let M, M’ and H be as above and po € M. Let p = (p1,--- , par)
be local defining functions for M' near H(py), and choose a basis Ly,--- , L, of CR vector
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fields for M near po- If a = (e, -+, o) s a multiindez, write L™ = L{* --- L%. Define the
increasing sequence of subspaces Ey(po)(0 <1 < k) of CV' by

Ei(po) = Spanc{L®pyz(H(Z), H(Z))|z=p, : 0 < |a] <L, 1 < p < d'}

0 0, . . ’
Here puz = (32, ,55=), and Z' = (2,--- ,z)y,) are the coordinates in CN'. We say that
1 N/

H is kg—nondegenerate at py (0 < ko < k) if

Exy-1(po) # Eie(po) = CV'.

The dimension of Ej(p) over C will be called the I*" geometric rank of F at p and it will
be denoted by rank;(F,p).

For the invariance of this definition under the choice of the defining functions p,, the basis
of CR vector fields and the choice of holomorphic coordinates in CV’, the reader is referred to
[La2]. An intrinsic definition was presented in the paper [EL]. If M is a manifold for which the
identity map is kg—nondegenerate, then the manifold is called ky—nondegenerate. This latter
notion was introduced for embedded hypersurfaces in [BHR] and it is shown in [E] that it can
be formulated for an abstract CR manifold. The reader is referred to these two references for
a detailed treatment of this concept and its connection with holomorphic nondegeneracy in
the sense of Stanton ([S]). In particular, in [BHR] and [E] it is shown that Levi-nondegeneracy
of a CR manifold is equivalent to 1—nondegeneracy. Thus the notion of ky—nondegeneracy of
a CR manifold can be viewed as a generalization of Levi nondegeneracy.

The main result in [Lal] is as follows:

Theorem 2.2. Let M C CN,M' c CN' be smooth generic submanifolds of CN and CN'
respectively, po € M, H = (Hy,--+ ,Hy/) : M — M’ a C* CR map which is ko—nondegenerate
at po and extends continuously to a holomorphic map in a wedge W with edge M. Then H 1s
smooth in some neighborhood of py.

Here recall that if py € M, d = the CR codimension of M, and U C C¥ is a neighborhood
of pg, a wedge W with edge M centered at pg is defined to be an open set of the form:

W={ZecU:r(Z Z)eT},

where I' C R? is an open convex cone, and r = (ry,--- ,r4) are defining functions for M near
po- In section 3, we will prove the following generalization of Theorem 2.2.
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Theorem 2.3. Let (M,V) be an abstract CR manifold and M’ C CN' a generic CR sub-
manifold of CN'. Let H = (Hy,--- ,Hy) : M — M’ be a CR mapping of class C* which is
ko—nondegenerate at py and assume that for some open convex cone I' C R,

WF(Hj)|p, cT,j=1,--- N’
where d is the CR codimension of M. Then H is C* in some neighborhood of py.

In Theorem 2.3, WF(u) denotes the C™ wave front set of u, that is,
WF(u) = {o € T*M : u is not microlocally smooth at o}.

For details about the C* wave front set of a function, see [H].

Remark 2.4. In Theorem 2.2, the assumption that H is the boundary value of a holomorphic
function in o wedge implies the much weaker condition that WF(H;)|,, CI' for some I' as in
Theorem 2.3. Indeed, in the embedded case as in Theorem 2.2, a CR function h on M s the
boundary value of a holomorphic function in a wedge if and only if its hypo-analytic wave front
set is contained in an acute cone which means that the FBI transform of h decays exponentially.
Our assumption in Theorem 2.3 only requires the FBI transform to decay rapidly.

In what follows, given a CR manifold (M, V), T° will denote its characteristic bundle, that
is, T° = {o € T*M : {0, L) = 0 for every smooth section L of V}.

Theorem 2.5. Let (M,V) be an abstract CR manifold with CR dimension n > 1 such that
the Levi form at every covector o € T° has a nonzero eigenvalue. Suppose M' C C"HF is
a hypersurface that is strongly pseudoconvex (k > 1) and let V' denote the CR bundle of
M'. Let F = (F,-- ,Fy) : M — M be a CR mapping of class C* whose differential
ar:v, — V},(p) is injective at every p € M. Then F is C* on a dense open subset of M.

We note that the preceding theorem allows a weakening of the smoothness assumption
in Theorem 1.2 of [EL] on finite jet determination. The theorem also implies that some of
the results in [BR] hold under a weaker smoothness assumption on the CR maps involved. If
M c CN, M c CY" are hypersurfaces, with M Levi nondegenerate at p € M and F : M — M’
is a CR mapping which is transversal at p, that is, dF'(CT,M) is not contained in V}(p) +%,
then F' is a local embedding (see section 3.4 in [EL]). Many other situations where (M, V) and
(M', V") are as in Theorem 2.5 and dF is injective can be found in the work [BR].

Let M, M’', F be as in Theorem 2.5. Define

Q ={pe M :ranky(F,p) =n+ k},
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Qo ={p e M :ranky(F,q) <n+k—1 at all points ¢ in some neighborhood of p in M},

Q= {p€ M : F is smooth in a neighborhood of p in M}.

For each 1 <1 < k, we also set

S :={p € M :rank,(F,p) <n+1—1}.

Note that €21, Q9,2 are all open in M, and 2; U 25 is dense in M. Moreover, 2y C %k

Definition 2.6. Let M, M’', F, S; be as above. For any p € Qq, we define the degenerate
degree of F' at p to be

min{l <[ < k : there ezists a neighborhood O of p such that O C S;},
and write it as deg(F, p).

Remark 2.7. Definition 2.6 is independent of the choices of the defining function, the basis
of CR wvector fields and the choice of holomorphic coordinates in C"**. For any p € Qa, by
Lemma 4.1 in Section 4, rank, (F,p) = n + 1, which yields that deg(F,p) > 2. Moreover, by
the definition of deg(F,p), if we let d = deg(F,p), there exists a neighborhood O of pin M
and {p;}3* C O such that rank,(F,q) < n+d—1 for all q € 0, {pi} converges to p, and
ranky 1(F,p;) =n+d—1 for alli > 0.

Theorem 2.5 will follow from the following Theorem and Theorem 2.9 below which together
with Theorem 2.3 imply that F' is smooth in 2, that is, ; C Q.

Theorem 2.8. For any p € Qa, there exists a sequence {p;}3°, C 2 that converges to p.

It follows that €2 is dense in 2; U €25, and hence in M. We remark that Theorem 4.8 will
show that if for some integer [, 1 < | < k — 1, rank;{1(F,q) = n + [ for all points ¢ in a
neighborhood of p, and rank;(F,p) = n+1, then F : M — M’ is smooth in a neighborhood of
p, where F, M, and M’ are as in Theorem 2.5. That is, such points p are in €.

Before we present the proofs of Theorem 2.3 and Theorem 2.5, we will prove the following
result which supplies a class of examples to which Theorem 2.3 applies. This theorem will
also be used in the proof of Theorem 2.5. The result may be viewed as the smooth version of
Hans Lewy’s extendability theorem in the embedded case.
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Theorem 2.9. Let (M,V) be an abstract CR manifold, o € Tg, with the property that the
Levi form at o has a negative eigenvalue. Then if u is a CR function (or distribution) near
p,o & WE(u). In particular, if the Levi form at every covectorn € TS has a nonzero eigenvalue,
then there is an open convex cone I' C RY(d = the CR codimension of M) such that for every
CR function u near p, WF(u)|, C T

Theorem 2.5 implies the following corollary which settles Huang’s conjecture in [Hu2]:

Corollary 2.10. Let M C C**', M’ ¢ C*™* be smooth strongly pseudoconvex real hypersur-
faces withn > 1,k > 1. Let F: M — M’ be a CR mapping of class C*. Then F € C>(Q)
on a dense open subset 2 C M.

Theorem 2.5 also provides a solution to a question of Forstneric in [Frl] using methods
different from the ones employed by Huang in the solution that he gave in [Hull:

Corollary 2.11. Let M C CN, M' ¢ CN' be real analytic hypersurfaces (1 < N < N'), M
of finite type (in D’Angelo’s sense) and M’ strongly pseudoconvezr. If F': M — M’ is a CR
mapping of class CN' =Nt then F extends to a holomorphic map on a neighborhood of an
open, dense subset of M.

Proof. Let p € M. If every neighborhood of p contains a point where the Levi form has a
positive and a negative eigenvalue, then p is in the closure of the set where F' is smooth.
We may therefore assume that a neighborhood D of p is pseudoconvex. Note next that
since M doesn’t contain a complex variety of positive dimension, it can not be Levi flat in
any neighborhood of p. We can therefore assume that p is in the closure of the set of strictly
pseudoconvex points in M. This latter assertion can be seen by using the arguments in Lemma
6.2 in [BHR]. In that paper, M was assumed algebraic but the reasoning in the Lemma is valid
for M as in this corollary. Since we may assume that F' is non constant, at a point of strict
pseudo convexity, the differential dF’ is injective. The corollary now follows from Theorem 2.5
and the analyticity theorem in [Frl]. O

In [Hul] M was assumed strongly pseudoconvex. However, as indicated above, when M is
of finite type in D’Angelo’s sense, the problem is reduced to the strongly pseudoconvex case.

We now present the proof of Theorem 2.9.

Proof. Recall that the Levi form of (M, V) at the characteristic covector o € T is the hermi-

tian form on V defined by
1

2¢/—1
7

,CU(U,U}) - <Jv [L7zl]p>a
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where L and L' are smooth sections of V defined near p with L(p) = v, L'(p) = w. When this
form has a negative eigenvalue, there is a CR vector L near p such that

1 _
5 @ 1L T} <0,

We may therefore assume that we are in coordinates (z,t) € R" x R that vanish at p,

9
a.Tj’

0 0
L= +V-1 ;bj(x,t)

where the b; are C* and real-valued functions near (0,0), 0 = (0,0,£°, 0) satisfies b(0,0)-£° =
0,(b= (b, - ,bp,)) and

(0.2 = -Zo)- € <o 21

Assume that Lu = 0 near (0,0). We wish to show that ¢ ¢ WF (u).
We introduce an additional variable s € R and define

0 0 0 - 0
Ll = & + \/—1L— % + V—la —;b](.%,t)a—xj

Let Z;(x,t,s) (1 <i < mng) be C* functions near the origin satisfying
L Zi(x,t,5) = O(s"), as s = 0, VI>1,1 €N, and Z;(z,t,0) = z;.

Set Zpor1(x,t,8) =t —+/—1s. For 1 < i < ngy, we can write Z;(z,t,s) = z; + s¢;(x,t,s) for
some C'* functions ;. We have, for any [ > 1,1 < i < ny,

O,
0s

S

(x,t,8)+i(x,t, s) +\/—_13%(x, t,s) —; bi(x,t) (5,-j + s%(x, t, 5)) = 0(s). (2.2)

It follows that

Differentiating equation (2.2) with respect to s leads to,

9%1h; (0 (08 P =, O =, %Y, I
KLY S B JRCAL B L BN o PG > 1.
Sast T 2gs TV T g TV 5 ; iz, S; i gsom, O VI
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Evaluating the latter at s = 0, we get, for any 1 < i < ng,

81 0 i
50( t0)+\/_w Zb (2, 1) =— w t,0) =0,

which together with equation (2.3) leads to:

0 1 Ob; .
, _ 9 Tl __Z < i< n. .
Im;(z,t,0) = 0 and aShrn@bl(:zc,t,O) 5 5t (z,t), V1<i<ng (2.4)

We will use the FBI transform in (z,t) space. For the solution u = u(x,t), at level s = &,
we write,

F(z, t,&,1,8) = / eQ@ta U ers )y (! Nz #)dZy (2! SN - A d g (2,1 ),
RnOJrl

where (£,7) € R™ x R,n € C(R™) p(x,t) = 1 for |z|*> +t* < 72 n(z,t) = 0 when
|z|? + t* > 272 for some r > 0 to be fixed. Here

Qx,t, 2t & 7,8) = \/—_1<(§, 7),(x — Z (' ¥, 8", t — Zpy i1 (2,1, 8)))

- K|(§= T)|((‘T - Z(‘r/7 tlv S,))2 + (t - Zn0+1(ZL’,, tlv S/>>2)7

where Z = (21, -+, Zy,), (x — Z(2', ', 8"))* = 3770 (x; — Z;(2',t',5'))?, and K is a positive
number which will be determined.

Let M; = >77°, aij(az,t,s)%,l < i < ngand My = & + 270 ¢t 8) 5= - be O
vector fields near the origin in (z,t, s) space that satisfy

M;Z; = 6;5, 1 <i,5 <o+ 1.

For any C! function h = h(x,t,s),

dh = nOZ—H MAh)le + (Llh - TL.E—H Mj(h>L1(ZJ)> ds (25)

J=1

which can be verified by applying both sides of the equation to the basis of vector fields
{Ly, My, , My,11} of CT(R™%2). Equation (2.5) implies that

no+1

d(hdZy N -~ NdZp, 1) = (L h— Z M;( ) ds NdZy A -+ N dZpy 1. (2.6)
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Let q(z,t,2',t',&,7,8) = n(z’, t)u(z’, t')eQ@Le V675 Denoting dZ) A - - - AdZy, 11 by dZ and
using equation (2.6), we have,

d(qdZ) = (Ll(nu) +nuly(Q) — OZ (M;(nu) + nqu(Q))Lle> e9ds N\ dZ. (2.7)

By Stokes theorem, for |sq| small, we have,

S0
/ q(z,t, 't & 7,0)de’dt’ :/ q(a,t, o't & 7, 50)dZ (2 1 s0) +/ / d(qdZ)
]R"O"’l Rn0+1 0 Rn0+1
(2.8)
We will estimate the two integrals on the right in equation (2.8) for (z, ) near (0,0) in R+
and (£,7) in a conic neighborhood T of (£2,0) in R™ ™. Observe that if ¥ = (11, ,%y,,),

Re Q<m7 t? x/’ t/’ g? 7-7 Sl) :S/<€7 Im¢(x,7 tl? S/)> - TS/

2.9
KNz — o — SRep(e P e -t —57) D)
Using equation (2.4), we can write
10b
i (z,t,5) = = 55 (w,1)s + O(s?)
10b (2.10)
== 55, (0:0)s + O(lzs| + [ts] + s2)
and so plugging this into equation (2.9) yields
1
ReQ(@t,x’, t' & T, s') = — §<§’ %(07 0)>s'2 _
_ K|(§,T)|(|x — x’ _ 3,R6¢($,,t,, S/)|2 + |t i 75/|2 . 8/2) (2.11)

+[EO(|2'|s” + [t']s™ + |s'°)

Since (£°, %(0,0)} > 0, given 0 < § < 1, we can get M > 0 and a conic neighborhood I' of

(€°,0) in R™*! such that

<£,%(0,0)> > M|¢| and |7| < 6[¢|, when (,7) € T. (2.12)

Our interest is in estimating the integral on the left hand side of equation (2.8) for (z,1)
near (0,0) and (§,7) € I'. When 7 > 0, we take sqg > 0 in (2.8) while when 7 < 0, we use

10
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sp < 0. This together with (2.12) allows us to deduce the following inequality from (2.11):

M
ReQ(z,t, 2", t',&,1,8) < — 73’2|§| — K|(&,7)|(J]x — 2" — s§’Rewp(a, 1, 8)|?

+t_t/2_812 4 O x's'2+t’s'2+s'3
£ =P = %)+ O] + [¢'l5” + |5'°) 2.13)

+ [t =17) + [ElO(|2/|s™ + [t']s™ + |s')

<<—% + (14 8)K)s”[¢] — K[¢|(|lz — 2’ — sRe (e, ¢/, &)

Choose K = ﬁ. Then (2.13) becomes

M / / / / AN
Tl =~ Rep AP

+t=11") +[EO(|2'|s™ + [t']s"™ + |s').

M
ReQ(z,t,x’,t',{,T, S/) < - IS/2|€| -

We choose r and |sg| small enough so that when (2/,¢") € supp(n) and |s'| < |so, (§,7) € T,
(2.14) will yield,

M M
ReQ(z,t, 2", t', &, 7,8 < —§3'2|§| 7 €|(|x — 2" —s'Reyp(2, ¢, 8|2+ [t —t'|?). (2.15)

4(1+9)

From (2.15), it follows that the first integral on the right in (2.8) (at level s’ = s3) decays
exponentially in ¢ and hence there are constants C, Cy > 0 such that for (¢,7) € I,

/ gz, t, 2/t 6,7, 50)dZ (! 1, 50)| < Cre™ @2l (2.16)
Rno+1
Consider next the second integral on the right in (2.8). To estimate it, we use equation (2.7)

which is a sum of two kinds of terms. The first kind consists of terms involving L1(Z;), L1(Q)
and Lju(recall that Lyu = Lu = 0) and these terms can be bounded by constant multiples of

’6"S/’meReQ(w,t,x’,t’,{,‘r,s’)’vm > 1’
and so using (2.15) which implies that
M
ReQ(x,t,2/,t',€,7,8) < —==5"¢],

the integrals of such terms decay rapidly for (£,7) € I'. The second type of terms involve
derivatives of n(z,t) and hence |z/|> + #* > 72 in the domains of integration. Therefore, if we

11
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choose 0 < |so| << 7, we can get A > 0 such that for (x,t) near (0,0) and (£, 7) € ', (2.15)
will lead to,

ReQ(x,t, 2", t',&,7,8) < —A[¢|, when |2']> + 7 > r®.

The latter leads to an exponential decay in (¢, 7) € I for (x,t) near (0, 0) for the corresponding
integrals. We conclude that there exists a neighborhood W of (0,0) in (z, ) space and an open
conic neighborhood T' of (£°,0) in R™™! such that for V(z,t) € W, ({,7) € I',Vm = 1,2, ,
there exists C),, > 0 satisfying

em[g(x_x/)+T(t_t/)]_K‘(§7T)|(|x_x/‘2+|t_t,|2)77($,,t,)U(.I/,t/)d.flf,dt/

Rn0+1

C
gz, t, 2/, ¢, € 0)dd'dt’| < n .
/ ( ) e+ )

By Theorem 2.1 in [BH] (see also [T] and the proof of Lemma V.5.2 in [BCH]), we conclude
that

Suppose now the Levi form L, at every o € T£ has a nonzero eigenvalue. Define
S={o¢€ Tz? :Ly(v) >0, YvoeV,}

The set S is conic, closed and convex. If £ € S, and £ # 0, then by hypothesis £, has at
least one positive eigenvalue and hence —§ ¢ S. Since £ ¢ W F(u), whenever L, has at least
one negative eigenvalue, it follows that W F(u) C S, for every CR function near the point
p. O]

Example 2.12. Let M = {(z1, 20) € C*: Im 2y = |21|*™} where m is a positive integer and let
M' = {(z1,2) € C?: Imzy = |21|*}. Then the map H(z1, z2) = (21", 22) is 1—nondegenerate at
the points where z; # 0, and m—nondegenerate at all the other points. When m > 1, M itself
is 1—nondegenerate at the points where z; # 0 while when z; = 0, it is not [—nondegenerate
for any 1 > 0. (The case m = 1 appeared in [Lal]. See also [K]).

Example 2.13. Let M = {(21,22) € C?: Imzy = |21*} and M' = {(wy, wq, w3, wy) € C* :
Imwy = |wy|?+|we|?—|ws|?}. For any odd positive integer m > 3, define H,,(z1,22) : M — M
by H, (21, 20) = (zl,zg,zg,@) where we have used a branch of the square root. H,, is a CR
mapping and it is the boundary value of a holomorphic map defined on a side of M. H,, is
a diffeomorphism. H,, is not smooth and so for each positive integer k, there is m such that
H,, is in C* but it is not k—nondegenerate.

12
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Example 2.14. Let M = {(21,2) € C*: Imzy = |z1|*} and M’ = {(w;,wy) € C*: Imwz =
|wy|? — |we|?}. For any positive integer m, let f : M — C be a CR function of class C™
which is not smooth on any open subset of M (see [BX] for an example of such). Define
H, : M — M by Hp(z1,2) = (f(z1,22), f(21,22),0). H,, is a CR mapping of class C™
which s not smooth on any open subset of M. Note that H,, is not k—nondegenerate for any

k.

3 Proof of Theorem 2.3

We begin by recalling the following “almost holomorphic” version of the implicit function
theorem from [Lall:

Theorem 3.1. Let U C CN be open, 0 € U, A€ CP, and Z = (Zy,- -+ , Zx) be the coordinates
in CN, W the coordinates in CP. Let F' : U x CP — C¥ be smooth in the first N variables
and a polynomial in the last variables. Assume that F(0,A) = 0 and Fz(0,A) is invertible.
Then there ezists a neighborhood U’ x V' of (0, A) and a smooth map ¢ = (¢, ,¥N) :
U' x V' — CN with (0, A) = 0, such that if F(Z,Z,W) =0 for some (Z,W) € U' x V', then
Z =(Z,Z,W). Furthermore, for every multiindex «, and each j, 1 < j < N,

0Y;
0Z;

if Z = (Z,Z,W), and v is holomorphic in W. Here D® denotes the derivative in all real
variables.

Da

(Z,Z,W)=0, 1<i<N, (3.1)

Given the abstract CR manifold (M,V) of CR dimension n and CR codimension d, we
will use local coordinates (z,y,s) € R® x R" x R? that vanish at py € M. We will write
z= (2, ,%,) where z; = x; + \/—_1yj for j =1,--- ,n. In a neighborhood W of 0, we may
assume that a basis of V is given by {L4,---, L,} where

Li:

0 - 0 d o '
0z + Zl%'(%y’ 8>8_zj + ;bu(%yﬁ)a—&, 1<i<n,

j=

the a;; and b; are smooth and a;;(0) = 0 = b;(0),V4, j, I (see for example [BCH], equation
1.19). In these coordinates, at the origin, the characteristic set

T = {(¢&,1,0) €R" x R" x R : € = = 0}
By assumption, there is an acute open convex cone I' C R? such that

WF(H;)|o c {(0,0,6):0 €T}, ¥j=1,--- N

13
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Let ¢ € C3°(W) whose support is sufficiently small and ¢ = 1 in a neighborhood of the
origin. For each j = 1,---, N’, by Fourier’s inversion formula,

o(x,y,s)H;(z,y,s) = / €2ﬂﬁ(m'£+y'"+s'a)@ (&,n,0)dodnd§

R2n+d

:/ €2wﬁ(w~€+y-n+5'ff)¢/]?j(§7n,g)dadndf
A

N / 2w btyntso) G (¢ . o) dodnde
R2n+d\A
:Ij('ra Y, S) + Jj($7 Y S)

where A = {({,n,0) e R" x R" x R?: 0 ¢ T'}.
Since WF(H;)|o C {(0,0,0) : 0 € I'}, if the support of ¢ is sufficiently small, for every
m =1,2,---, there exists a constant C,,, > 0 such that

Cin

OH, <

V(¢ n,0) € A

It follows that [7(z,y, s) is C* on R***4 Write

J (.Y, s) = / GZWH(I‘HZ/'MS'J)@(fa n, U)dadﬁdf‘i‘/ GZWH(MW'”H'U)@(QW o)dodnd§
By

Bs

where B
Br={(&n,0): € +n* <1, 0 €T},
By ={(&n,0): €+ |n]* > 1,0 €T}

Observe that since TP N By = ), for any CR function u near the origin, W F(u)|o N By = 0.
Moreover,

By N {(&m,0) : [€]* + [n]* + o] = 1}
is a compact set. It follows that for each m =1,2,--- | we can get C;, > 0 such that
Cl

S
RSN S T W+ oD

V(& n,0) € By (3.3)

It follows that
sz(x’ v, 3) — / e27r\/jl(x'f+y'77+5-a)¢[_[j<€, 77’ O’)dO’dT]df

Bs

is C'™ on R2"t4,
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Since T is an acute cone, there is ¢° € R? such that ¢° - o > 0,Vo € I'. We may assume
that for some conic neighborhood I'y of o and Cy > 0,

v-o > Cylv||o|, Vv eIy, o el. (3.4)

For t € I'y, we define

Fl(z,y,s,1) :/ 62“‘/?1(”£+y'"+(8+mt)'0)¢/\[{j(5777aU)dgdndf-
By

Since (b/fz has a polynomial growth, for some Cy, M > 0,
|¢Hj(§7n70)| S Cl<1 + |0|)M7 V(f,n,a) € Bl- (35)

Therefore, using (3.4) and (3.5), we get,

: C
|F (x,y,s,t)] < C{/ e~ ltlel(1 - |o|)Mdo < Wﬁ, t € T'y, for some C7,Cy > 0. (3.6)
Rd

Moreover, for all multiindices o, f € N*, v € N¢,
C

a af3 j
|818y33Ff(x,y,s,t)| S WTW’ (37)
for some C' > 0 when t € I'y.
When t € T'y, _ '
0w, F (x,y,s,t) =0, for 1 <v <d, (3.8)
where 0, = %(% + \/—1(%).
Define
Fj(x,y,5,1) = /B ATV St VIO GH (€, o) dédndo,
for t € T'y. By (3.3), FJ is C*° up to t = 0, and
Ow, Fl(z,y,5,t) =0, for 1 <v<d, tely. (3.9)

Since I(z, y, s) is C> and bounded, we can find a bounded C™ function Fj (z,y, s,t) (|t| small)
such that

Fl(x,y,5,0) = I(x,y,s), and Dy, Fi(z,y,s,t) = O(|t]"), Vv =1,--- ,d,¥l =1,2,3,...
(3.10)

15
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Let o(z,y,s) € C3°(W) such that its support is contained in a neighborhood of the origin
where ¢ = 1. By Parseval’s formula,

lim Fg(x,y,s,t)gp(x,y, s)dzdyds :/ F(z,y,s)p(z,y, s)drdyds
t—=0,tel't Jpon+td R2n+d
— [ Ben B¢ —n.—o)ednds (311
R2n+d
= | T .07~ —n. ~)dsdndo

Likewise, since Fy is C*° and bounded,

/2 a FQJ (mﬁ Y, S)SO(:E? Y, S)d(Edde = ngJ (67 UB 0—)@(_57 -1, _O_)dgdndo_ (312)
R2n B
For t € I'y, using (3.4), we have,
[ Ry sp(ey.s)dadyds
R2n+d
:/ (/ €2m/jl(m'£+y'n+s'g)§0(l’, v, S)dxdyds)e_t'”gb/[-?j(&, n, O’)d&dndO' (313)
B1 R2n+d

- /B (=€, —n, —0)e " GH,(€, n, 0)deddo,

and hence
lim Flj(xay7sat)¢<xay7 S)dxdyds = / @(_57 -n, —0>¢E(§7U7U)dfdnd0 (314)
t—0, tely R2n+d B1

Let FV(x,y,s,t) = Fg(x, y,s,t)+ Ff(x, Y, S, t) +F2j(m,y, s,t) for t € T'y. From (3.11),(3.12)
and (3.14),

lim Fj<w7 Y, S, t)@(.ﬁlﬁ', Y, s)dxdyds = / 9/5(_57 =, _0)5\[—[](67 U U)dgdndg

t—=0, tel'r Jpon+td R2n+d

:/ . o(x,y, s)H;(z,y, s)p(z, y, s)drdyds.
RQn
(3.15)

Therefore, in a neighborhood of the origin, in the distribution sense,

lim  F(x,y,s,t) = H;(z,9,s). (3.16)

t—0, tel'y
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For ¢t € T'; small, from (3.7)-(3.10), we have: for (x,y,s) near 0, given «, (3,7, there exists
C1 > 0 such that for some \ > 0,

1000° 01 FI (0, y, 5,1)| < G , and (3.17)
Y |t‘)\
0207070, F (z,y,5,t) = O([t]"), VI > 1, Vv =1,--- .d. (3.18)

For the rest of the proof, we follow the argument of claim 3 in [Lal]. We may assume
that H(0) =0 € M'. Let p = (p1,--- , par) be defining functions for M’ near 0. For o € N* a
multiindex, recall that L% = L{* --- L%,

Set F(x,y,s,t) = (F*(x,y,s,t),---,FN'(x,y,s,t)),t € I'1. As in [Lal], there are smooth
functions V¥, (2, Z',W) for |a| < ko,1 < u < d', defined in a neighborhood of {0} x CX ko)
in CV" x CK(*o) polynomial in W, such that

Lapu(H(Zv 3)7 H(Z> S)) = \IIM,OA(H<Z> S)? H(Z7 S)a (Lﬁﬁ(zv 8))|5\§k0>7 (319)

and
L8 pyz(H, H)o = Wy1.0,2(0, 0, (L7H(0, 0)) <1y )- (3.20)
Here K (ko) = N'|{B : |B] < ko}|. Equatlon (3.20) and the kp—nondegeneracy assumption
on the map H allows us to get (a',---,a™"), (u1,--- ,puav) € NV and a smooth function

W(Z',Z' W) = (1, - ,bn), which is holomorphlc in W, such that with
v = (‘Ijﬂl,fll’ T 7\IjuNl,aN/)7
if W(Z',Z' W) =0, then Z' = (Z', Z',W). Moreover, with Z' = (2}, -+ , 2., we have,

0Y;

8,(2’,7,W):o, Vi=1,--- N, j=1,--- N, (3.21)

whenever Z' = (Z',Z',W). In particular, since ¥, (H (z,s), H(z,s), (L?H(z,s))5<k,) = 0,
we have,

Hj(z,8) = ;(F(z,5,0), F(z,5,0), (L°F(z,5,0))51<k), Vj = 1, -+ , N'. (3.22)
Recall that fori =1,--- | n,

8 d
Li 82’1 +Zaw x,Y,s Zj +lz:1:bil(xayv S)_

j=1
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Let
Mi =

0 - ) d 9 |
oz, + ;Aij(x,y, S’t>£ + ZB@l(x,y, S’t)(‘?_sl’l <i<n,

j= J =1

where the A;; and B;; are smooth extensions of the a;; and b; satisfying
0w, Aij(,, 5,1), 0w, Ba(x,y,5,t) = O(|t|™), Vv =1,--- ,d, Ym =1,2,--- . (3.23)
Now define
01(z2,5.8) = Uy (F (2,5, 1), Flz, 5, 1), (MPF (2,5, 1)) 1<),

for j=1,---,N"and for t € —I'y, || small. Using (3.18),(3.21) and (3.23), we conclude that,
when (z, s) is near the origin in C* x R¢ and t € —I'; (|t| small), for any «, 3,y multiindices,
there is C' > 0 such that

C
|D;‘D5DZgj(z,s,t)| < g for some A > 0. (3.24)
and B
DeDID10y,g5(z,8,t) = O(Jt|™),Vm =1,2,--- ;v =1,--- d. (3.25)
From (3.22), we know that,
. — 3 . ) — PP !
HJ (27 S) tﬁ()%lyelfl"l 9j (27 S, t)7 vj 1a ’ N'. (326)

By Theorem V.3.7 in [BCH], it follows that WF(H;)|oNI" = (). Since by assumption W F(H; )|y C
I', we conclude that H is C'*° near the origin.

4 Proof of Theorem 2.5

Fix any p € M, and assume p' = F(p) = 0. Since M’ is strictly pseudoconvex, we may assume
that there is a neighborhood G of 0 in C"**, and a local defining function p of M’ in G such
that
MNG={Z"€G:p(Z,Z") =0},

where p(Z',Z') = —v’—i-zgif_l 2512+ ¢*(Z', Z"). Here Z' = (2}, , 2}, are the coordinates
of C"**, 2/ = ' 4+ v/=1v" and ¢*(Z',Z") = O(|Z')?) is a real-valued smooth function on
G. Note that rank;(F,p) is a lower semi-continuous integer-valued function on M for each
1 <[ <k Forany pe M,
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ranko(F, p) < rank;(F,p) < --- <rank(F,p).
We next recall some basic properties of the rank of F. Write F' = (Fy,--- , F,1x). Since
F(M) C M’, we have
Fn+k - Fn+k
24/—1
on M near p. Applying Ly, --- , L, to the above equation, we get
LanJrk
2v/—1
LF,
24/ —1

on M near p for any multiindex 1 < |«| < k. Therefore, on M near p,

ERY e ) G

p(F7F):_ +F1F1++Fn+k—1Fn+k—1+¢*(F7F):07 (41)

+ FLiF 4+ Frpa LiFo 1 + Lo (F,F) = 0,1 < j <n, (4.2)

+ B LF + -+ Frap 1 LTy + Lo"(F, F) =0, (4.3)

pZ/(Faf) = (Fl_'_(bzi(FaF% 7Fn+k71 +¢z’

n+k—1

and for any multiindex 1 < || < k,

Lopz(FF) = (L2 (Fr 4+ %), oo o L (P + 0% ), L0 ). (4.5)

n+k

Lemma 4.1. With the assumption of Theorem 2.5, for any p € M, we have ranky(F,p) =
1, rank;(F,p) =n + 1, and thus rank,(F,p) > n+ 1, for 1 <1 < k.

Proof. Assume that F(p) = 0. Note that ¢, (F, F)|, = 0, for all 1 <i < n+ k. Equation (4.4)
shows that ranko(F,p) = 1. By assumption, dF : V, — To(o’l)M’ is injective. By plugging
Z = p in equation (4.2), we get L;F',1x(p) = 0 for each 1 < <mn. Since {Ly, Ly, -+, L,} is
a local basis of V near p, we conclude that the rank of the matrix (L;F})1<i<n1<i<nik-1 1S N.
Without loss of generality, we assume that

LF, . . . LF,
# 0 at p.
LF . .. LF,
Notice that ¢, lp = ¢Z§|p == ¢z;+k|p =0, L%, |, = ngbzé|p == quﬁ’;;+k|p =0, for all
1 < j < n. Thus rank;(F,p) = n + 1. Consequently, rank;(F,p) > n+ 1 for 1 <[ < k for any
pe M. O]
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To simplify the notations, let

Zl

— V-1
anik(Z, 2) = —— + ¢,

. (P,
a(Z,7) = (a1, -+ ,Gnip)
Then
pz(F,F) =a= (a1, anik-1, Qnik),
Loz (F,F) = L% = (L%, , L®p4p—1, Ln 1)

for any multiindex 0 < |a| < k. Recall that
rank;(F, p) = dim¢(Spanc{L*a(Z, Z)|, : 0 < |a| < 1}).
The following normalization will be applied later in this section.

Lemma 4.2. Let M, M', F be as in Theorem 2.5 and p =0 € M. Assume rank;(F,p) = Ny,
for some 1 <1 < kn+1< Ny <n-—+k. Then there exist multiindices {Bni1, -, Bng—1}
with 1 < |B;] < I for all i, such that after a linear biholomorphic change of coordinates in
Crth . Z = Z'A7Y, where A is a unitary (n + k) x (n + k) matriz, and Z denotes the new
coordinates, the following hold:

Lyal,
~ V=1 L&
a‘P = (07 o 707 T)? L5n+1§|p - ( BNO_l 0 b ) : <46)
L5N0715‘p

Here we write a = ﬁ-Zv(Z(F),Z(F)), and p is a local defining function of M’ near O in the
new coordinates. Moreover, By,—1 is an invertible (Ny — 1) x (No — 1) matriz, 0 is an
(Ng — 1) x (n+ k — Ngy) zero matriz, and b is an (Ny — 1)—dimensional column vector.

Proof. 1t follows from Lemma 4.1 that
{a> Lla> ) Lna}|p
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is linearly independent. Extend it to a basis of E;(p), which has dimension Ny by assumption.
That is, we choose multiindices {341, , Bn,—1} with 1 < [g;| < for each 4, such that

{a, Lia, -, Lya, Lﬁn-ﬂa’ - ,LﬁNo—la}’p

is linearly independent over C. We write @ := (a1, ,anyx_1), that is, the first n + k — 1
components of a. Notice that a(p) = (0,--- ,0, @) Consequently,

{Llav ) Lnaa Lﬁn+la> ) LﬁNO_la}‘p

is linearly independent in C"**~!. Let S be the (Ny — 1)—dimensional vector space spanned
by them and let {7}, --,Tn,—1} be an orthonormal basis of S. Extend it to an orthonormal
basis of C*™*=1 . {Ty -+ Tny_1,Tng, "+, Tnir_1} and set

T t
T = 3 '1_ A = T Ofm+k71 )
’ 0n+k:—1 1

Tn+k—1

Here 0,,, ;1 is an (n+k—1)—dimensional zero row vector. Next we make the following change
of coordinates: Z' = ZA, or Z = Z'A~. The function p(Z,Z) = p(ZA, ZA) is a defining

function of M’ near 0 with respect to the new coordinates Z. By the chain rule,

FA(Z(F), Z(F)) = pu(F, F)A. (4.7)
For any multiindex «,
Loy Z(F), Z(F)) = Lp(F, F)A. (4.8)
In particular, at p, we get:
L15|p L1a|p
~ L,a| L,a|
al, = aly4, L5”+1?§|p = L5”+1e]10|p A. (4.9)
L5N0—1’3V_|p L5N0—1a|p

Furthermore from the definition of A, in the new coordinates, equation (4.6) holds and By,_1
is invertible. W
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Remark 4.3. From the construction of A in the proof of Lemma 4.2, one can see that in the
new coordinates Z, the following continues to hold: There is a neighborhood G of p' = 0 in
C™** and a smooth real-valued function p in G, such that,

MNG={ZeG:p(Z,2)=

0}.
Moreover, 5(2’,?) = —U+ Z;L:f_l Z; 12 + &(2,?), where Z = (1, Znsn) Znik = U +

V—1v and &(Z,E) = O(|Z*) is a real-valued smooth function in G. We will write the new
coordinates as Z instead of Z.

We will next prove some lemmas on the determinants of matrices.

Lemma 4.4. For a general n X n matrix

bir o bin
ba1 oo ban
B= ,
bnl bn2 bnn
where bj; € C for all 1 <1i,j <n,n >3, we have,
1 2 n—2 n-—1 1 2 n—2 n—1
By n2 1) Pl A
’il iQ Z-n,Q n il i2 Z'n,Q n
PO ne2 1) Pl oz )
— B( ;_1 ;? ;_"‘2 VB, for any 1 <iy <iy < <ipo<n—1,1<j; <jo< <
1 2 n—2
Jno < n—1. In particular, if |B| = 0, then (x) equals 0. Here we have used the notation
bivji iy birj,
. ) Dizji  Digjy bisj,
B("™ P = for 1 <p<n.
Ji o J2 Jp
bipjl biij . . . bipjp

To prove Lemma 4.4, we need the following Lemmas.

Lemma 4.5. Assume p > 3, C is a p X p matriz,
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C11 e clp
c=1[ - - ],
Cp1 Cpp
where ¢;; € C for all 1 <1i,7 <p. Then
en”?|C| = |C), (4.10)

where C is a (p—1) x (p— 1) matriz given by

€11 C12 o Ci1 Cip
" Co1  C22 Co1 Cop
C =

€11 Ci2 o €11 Cip

Cpl  Cp2 Cp1 Cpp

C11 Ci(j+1)

That is, C' = (ij)1<i<(p-1),1<j<(p-1), With Tj = Cont G

Proof. When ¢;; = 0, (4.10) holds since both sides equal 0. Now assume ¢;; # 0. By eliminating
Co1, ", Cp1, WE get7

C11 C12 T Cip
O 622 J— 01202_1 PR 02 — Cl 02_1 ~
‘C” _ ci1 P Peyr | — Cll_(p_2)’0|- ]
PR R _ Cpl
0 2 = crag; Cpp — Clpey,

Lemma 4.6. If the determinant of a 3 X 3 matrix

11 Q12 413
Q21 Q22 QA23 | = 07
31 Aazz ass

where a;; € C for all 1 <1,5 < 3. Then

@11 A2 ai; as @11 a2 Q12 A13
Q21 A22 a1 Q23 Q21 A22 Q22 Q23
11 Qa2 ailr as a1 a2 Q12 Q13
a31 a3z az1 ass a3y as2 a3z A33
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a1 G12 aix a13 a1 G12 a2 13
21 22 21 (23 G21  (G22 Q22 (23
= =0.
a21 Q22 21 Q23 A21 Q22 Q22 Q23
az1 a3z az1 as3 as1 asz a3z a33

Proof. Using Lemma 4.5,

a11 a2 aj; ais
21 Q22 21 Q23 @11 a1z ais
= Q11| @21 Qg2 a3 |,
a1 12 aix a3 Ga31 G32 ag3
az1 a3z as1 ass
a1 Q12 a2 @13
21 Q22 Q22 Q23 @11 a2 ais
=ai2 | G21 G2 G23 |,
ajx @12 12 a3 31 a3z 0ass
az1 a3z azz (33
a11 a2 aj; as
21 Q22 21 Q23 @11 Q12 ais
= Q21| G21 Q22 a3 |,
21 (22 21 (23 Ga31 G32 ag3
az1 a3z as1 ass
a1 G12 a2 @13
21 (22 Q22 (23 11 G12 a13
= G292 | A21 Q22 G23
21 (22 Q22 Q23 az1 a3z ass
azy a3z az2 (33

]

Proof of Lemma 4.4 : We proceed by induction on the dimension of B. From Lemma
4.6, we know Lemma 4.4 holds for n = 3. Now assume that it holds when the dimension of B
is less than or equal to n — 1. To prove it when the dimension is n, it is enough to show it for
the case when 1 = 1,i5, =2,--- Ji, o =n—2and j; =1,j0 =2,--- ,j,_o = n — 2. Namely,
we show that
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bll b12
b21 b22
bnfll bn712
bll b12
bn—21 bn—22
bnl an
1 2 -+ n—2
=B( n_2)

Now we view all terms here as rational functions in byq, - - -

|B| = by "

blnfl
b2n—1

bnflnfl

bln—l

bn—2n—1
bnn—l

B(

B(

1 2
12)

1 n
12)

bn—21

bnl

B(

B(

b1n72
b2n—2

bn71n72

bln—?

bn—2n—2
bnn—Q

|B|, and the other cases are similar.

1 2
1 n)
1 n
1 n

)

By applying Lemma 4.5 and the induction hypothesis, it follows that

B(y o) -« B(; )
BT D) - B(; M)

Combining it with (4.11), we obtain

2
2

—_ =

1= (B

)) ~(n-3)

1
B(1

[N )

— =
ORI

bln

b2n

bnfln

bln

bn—2n

bnn

, bnn. By Lemma 4.5,

(4.11)
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By further applications of Lemma 4.5 and the induction hypothesis as above, we arrive at the
conclusion.

Finally we state the following simple lemma:

Lemma 4.7. Let by, --- ,b,, and a be n-dimensional column vectors with entries in C, and let
B = (by, -+ ,b,) denote the nxn matriz. Assume thatdetB # 0, and that det(b;,, by, -+ ,b
0 foranyl <iy <ig <--- <in_1 <n. Then a= 0, where 0 is the n-dimensional zero column
vector.

Proof. Note that {by,---,b,} is a linearly independent set in C". Write a = > 7 | A;b; for
some \; € C,1 < j < n. It is easy to see that all the \; = 0 by using the assumption that
det(bil,biQ, s ,bin_l,a) = 0, Vi<ig<ig < s <ip_q <n. ]

Theorem 2.8 will follow from:

Theorem 4.8. Let M, M’ F be as in Theorem 2.5 and p € M be a point with rank,(F,p) =
n+1 for some 1 <1< k—1. Assume that in some neighborhood O of p, rank;,1(F,q) = n+1
for all ¢ € O. Then F is smooth near p.

Proof. Assume p = 0. Applying Lemma 4.2, after a suitable holomorphic change of coordinates

in C"** there exist multiindices {Bny1, -+, Bnp_1} with 1 < || <lforalln <i<n+1-1

satisfying

L1a|p

L,a|

5 LﬁnH;’p =(Byy-1 0 b). (4.12)
LBTLJrl*l a|p

Here B,,;,—; is an invertible (n +1—1) x (n +1— 1) matrix, 0 is an (n+1—1) x (k —[) zero

matrix, b is an (n + [ — 1)—dimensional column vector. From equation (4.12), we know that

ay tet Qpi—1 Qpik
Liay T Lyanqi—1 Lyanqr
L, a; e LyGyi-1 Ly £ 0 at p. (4.13)
[P+ a - L’Bn+1an+l—1 [Bn+1 Utk
Lﬂn«klfl al P Lﬁn#»lfl an+l_1 L6n+l71 a’TL+k
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To simplify the notation, we denote the n—dimensional multiindices by 5y = (0,--- ,0), and
B, =(0,---,0,1,0,---,0), for g = 1,---,n, where 1 is at the u™ position. That is, L =
L,,p=1,---,n. Then inequality (4.13) can be written as

Lﬁoal e Lﬁoan+l71 LﬁOan+k‘
N 20 at p. (4.14)
Lﬁn+l71a1 P Lﬁ'rﬂ»l*l an+l_1 Lﬁn{»lfl an+k

By shrinking O if necessary, it is nonzero everywhere in O. Since rank;,1(F,q) < n+1in O,
we have

dimc(Ei11(q)) = dime(Spanc{(L%y, -+ , L%p1k)|q : 0 < || <1 4+1}) <n+1

everywhere in O. Hence for any multiindex gwith 0< \E\ <Il+1l,and any n+l < j <n+k—1,
we have, in O,

Lﬁoal . Lﬁoan+l_1 Lﬁoan+k Lﬁoaj
Lﬁn-&-l—la[l P L6n+l—lan+l71 Lﬁn+l—lan+k Lﬁn+l_1aj = 0 (415)
Lﬂal Lﬁaanl Lﬂan+k Lﬁaj

Furthermore, we will prove the following claim.

Claim: Forany 1 < v <nn+l<j7<n+k—-1 and i1 < i3 < --+ < ipy_1 with
{i1, - ipr—1} C{1,--- ,n+1—1,n+ k}, the following holds in O :

LBOCLil s Lﬁoain+171 LBOCLJ'
Lﬂlail ce LﬁlaiHH Lﬂlaj
Lﬁnﬁ»lfl ail “ e L/Bn+l71ain+l_1 Lﬁnﬁ»lfl a] B
L, - - - = (4.16)
Lray - L4 L™ay,
L3n+l—1a1 ceo LBryia Antl—1 L5n+z—1an+k
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Proof. By the quotient rule,

the numerator of

Lﬁoal
L:Bn+l71 al .
Lﬂoal

L/Bn+l—1 al

Lﬁoal
L/gn+l71 al .
LyLﬂOCll

LA a

Lﬁn«klfl al .

Lﬁoa1
Lﬁn«klfl al
LﬁOCLl

Lﬁn+l72 al

L,LPr+i-1qy ..

L/Boan%»lfl

.. L/Bn+l71an+l_1 Lﬁn+lfla/n+k

L'BO Qp4i—1

Lhoa,, LPoa; ., Lhoa,
LPra,, LPa;, ., LPra;
LBn-H—l a/il L5n+l—l ai il LBn-H—l a
Lﬂoal LPog o1 LPog ik -
I Pnvi—1 a Lﬁn+l71an+l71 [ Bn+i-1 At
L%, 4 L%a;, L Qi 11 La,
) Lﬁlail LﬁlainJrFI Lﬁlaj
Lﬁn«klfl ail e Lﬂn«klflain-‘rl_l Lﬁn«klfl CL] _

1o - [Po a;, [Po Wiy s [,Bo a;
Lﬂl Ay L’Bl aiwkl L’Bl aj

“ e L5n+l—1an+l_1 L/Bn+l—1an+k

Lﬁoan+l71

.. L/Bn+l71an+l_1 Lﬁn+lfla/n+k

. LyLﬂOaﬂnJ’»l—l LuLﬁoan+k)

Lﬁl An41—1

.. L5n+l71an+l—1 LBTL«H*la]n_‘_k

Lﬁo Api-1

I ,Bo Utk

LA Ut

Ao Utk

“ e Lﬁn+171an+l_1 Lﬁn«klflan_’_k

LBO Ap41—1

Lﬁn+l72 an+l_1

IBo Ut

L,

Brti-1g. ... [Bnti-1g. Brti—1 .
LPnti=tqg -« LPrti=tq; . LPrti=tq,

L%a;, LPq; ., .  L'a
LPra;, L% ., .  L"a
L/Bn+l71ail o LBn«FlflaZ Lﬁn#»lfla/
LyLﬁoail s LyLﬁoain+171 LVLBOCL]'
Lﬁlail LﬁlaiMH Lﬁlaj
L/Bn+l71ail o Lﬁn+l71ain+l_1 Lﬁn#»lfl aj
Lﬁoail LﬁoaiHFI LBOCLJ'
Lﬁlail LﬁlaiHH Lﬁl(lj

Brti—1gq. ... JBnti-1g. Brti—1p.
LPrti-1q,, LPeti=ta,; . LPr+i-ta,

Lﬁoail

Bo g .
L aln«klfl

Lﬁoaj

Lﬁn+l72 an+k

. LVLBanlanH_l LVLBanlanJrk
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Brti—24. Bnti—24. Brnti—2p.
LPrti=2q,; LPr+i=2qy o LPrti2q,
LVLBW'+171 ai1 “ e LVLBn%»lfl ain+l_1 LVLBnﬁ»lfl a]
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From equation (4.15) and Lemma 4.4, we know each term on the right-hand side of the

equation above equals 0. Hence equation (4.16) holds. This completes the proof of the claim.
]

Thus the fraction in the parentheses in equation (4.16) equals a C*~! CR function in O.
It follows that for any fixed n +1 < j < n +k — 1, there exist C*!'—smooth CR functions
G1.Gy, -+ Gl q, Gy in O, such that, if i) < iy < -+ < ipygy and (i1,42, -+ ,ipy—1) =
(1,2, Jig,-- ,n+l—1,n+k)ige {1,2,--- ,n+1—1,n+k} (where (1,2, ,ig,--- ,n+
[l —1,n+k) means (1,2,--- ;n+1—1,n+ k) with the component “iy” missing) then in O,

Lﬁoail s LﬁoainH_I LBOCLJ'
Lﬁlail s L'Blain+l71 Lﬁlaj
[Bn+i-1 a;, - [Bn+i-1 Wiy s [Bn+i-1 a;
Lﬁoail s Lﬁoain+171 LBOCLiO
_ Gj LB1 Ay s L’Bl ain+171 LB1 aio
io .. .. ...
L5n+l71ail R L6n+l71ain+l_1 L5n+l71ai0
That is,
Lﬁoail e Lﬂoainufl L (aj - Gioaio)
LPa, - Loa,, L (a; — Gy io) =0. (4.17)
Lﬁn+l—1 ai1 “ e Lﬁn-&-l—l a/inJrl—l L/Bn+l—1 (aj — G-Zoai())
We further assert:
Claim: In O, we have,
-1 j 1
Lﬁ0a81 o L50a8n+l_1 LPo (aj — Z?{II X GZCLZ — G£}+kan+k)
l—
Lﬁlabd o Lﬂlasnﬂd g (aj - Zi:l Ggai - GiH—kan—i-k) =0 (4.18)
-1 j j
L6n+l71a51 U L/Bnﬂilasnuﬂ LB”H% (aj - ZZLII Gzal - Giz-i—kan-i-k)
for all s; < so < -++ < spyy1 with {s1,--+ s} € {1,---,n+1—1,n+ k} and any

n+l<j<n+k-—1
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Proof. Assume that (s1,---,8p14-1) = (1,--+,50,--- ,n+1—1,n+ k). Notice that for any
n+l<j<n+k—-1lji#spandiec{l,--- ,n+l—-2n+k},

LPag, oo LPoa, ., L (G ay)
B1 - B1 Bi(( .
e I
L/Bn+lfla/sl e L/BnJrl 1(15 1 L/BnJrl 1(Gjaz)
Combining this with equation (4.17), one can check that equation (4.18) holds. O
By Lemma 4.7, equation (4.14), and (4.18), we immediately obtain that in O,
n+l—1
L% (a ZG]al T knek) =0V 1<t <n+l—-1n+l<j<n+k-1
In particular, when t = 0, we have:
n+l—1
ZGJaZ )ik =0n+1<j<n+k—1 (4.20)
That is, in O,
ntl—1__ ‘ 1
j j )
Z J(Fi+¢7) Gn+k(2\/_—1+¢zn+k) 0. (4.21)
Recall that we have, by shrinking O if necessary, in O,
- B — B = — =
+ P+ P Fe 1+ 0" (FF) =0, 4.22
1 141 +h-1Fnik-1 + 7 ( ) (4.22)
LiFure | FLiFy + -+ Fopp1 LiFo1 + Lio*(F,F) = 0,1 < j <mn, (4.23)
N =)=
L'BtFn—i-k

+RLPF 4 4 oy | P Fy o + L2 (FF) =0,n+1 <t <n+1—1. (4.24)
2v/—1
We introduce local coordinates (z,3,s) € R® x R" x R? that vanish at the central ponit
p € M. By Theorem 2.9, GJ Gn+k, Fi,--- | F,1k extend to almost analytic functions into a
wedge {(z,y,s+it) e UxV xT'1: (z,y,s) €e U xV, t €1}, with edge M near p =0 for all
1<i<n+l—-1,n+1<j<n+k—1. Here U xV is a neighborhood of the origin in C" x R?

30



On the C* version of the reflection principle for mappings between CR manifolds

and I'y is an acute convex cone in R? in t—space. We still denote the extended functions by
G}, Gl Fyy - Fyg. Arguments similar to those used in the proof of Theorem 2.3 imply

that the G7 and G, . satisfy the estimates:

; C
anp
|DnyDZG3(’Z787t)‘ S W?

; C
DeDIDIGE (2, 8,t)| < s for some C, A > 0

and

DngDzaqug(zv S7t) = O(|t|m)v DngDzaqun+k(Z7S7t) = O(|t|m)>
forall1<i<n+l-1,n+1<j<n+k—11<v <d,m>1. Similar estimates hold for
B, For.

We now use equations (4.22), (4.23), (4.24) and (4.21) to get a smooth map ¥(Z', Z/, W) =
(Uy,---,U,,) defined in a neighborhood of {0} x C? in C"** x C?, smooth in the first n+ k
variables and polynomial in the last ¢ variables for some integer ¢, such that,

al aT n—+l n—+l n+l n+k—1 n+k—1 n+k—1\ __
\I/(FaFv (L F)1§|a|§laG1 y T 7Gn+171aGn+k7"' aGl y 7Gn+1717Gn+k ) =0

at (z,s,0) with (z,s) € U x V. Write

a = (G?Ha T GZﬂfl’ GZﬂw T G?—Hg_lv e 7GZI;§:117 GZfZ_l)
Observe that
Onyi-1 Ok @
Vol o) cpamae) = | Bavi-t 0 b,

where Oy is an N—dimensional zero row vector, Cis a (k —1) X (n+1 — 1) matrix, I5_; is the
(k—1) x (k—1) identity matrix and we recall that B,, ;1 is an invertible (n+1—1) x (n+1—1)
matrix, 0 is an (n+1—1) x (k—1) zero matrix, b is an (n+ [ — 1)—dimensional column vector.

The matrix \I]Z’|(p,(L“F)lgMgl(p),é(p)) is invertible. By applying Theorem 3.1, we get a solu-

tion ¥ = (¢1, -+ ,Y¥nix) satisfying (3.1) and for each 1 < j <n +k,

Fy = ;(F, F,(L°F)1<ja)<1, G)

at (z,s,0) with (z,s) € U x V. Recall that in the proof of Theorem 2.3, for each i =1,--- | n,
we denoted by M; the smooth extension of L; to U x V x R satisfying (3.23). For each
1 <7< n+k,set

hi(z,s,t) = ;(F(z,s, —t), F(z,5,—t), (MO‘F)ISMSI(Z, s,—t),G(z,s,—t))

31



S. Berhanu, Ming Xiao

and shrink U and V and choose d in such a way that h; is well defined and continuous in _
where Q_ = {(z,y,s +it) : (z,y,s) € U x V,t € —=I'1,|t| < 6}. The same proof as before
leads to the estimates:

«

s for some C; A > 0

|DeDIDIh;(z,8,1)] <
and B
DeDy D10y, hi(z,s,t) = O(|t|™), Vv =1,--+ .d,m=1,2,...

forte —TI',1<j7<n+k.

Notice that the F} satisfy similar estimates in I'y, and b, F; = b_h; for each 1 < j < n+k.
Applying Theorem V.3.7 in [BCH] as before, we conclude that F' is smooth near p. This
establishes Theorem 4.8.

]

Proof of Theorem 2.8: Fix p € 0,. Let a neighborhood O of p and {p;}* C O be as
mentioned in Remark 2.7, and write d = deg(F, p). Since rank,(F,q) <n+d—1for all ¢ € 0,
and ranky 1 (F,p;) =n+d—1 for all i > 0, by Theorem 4.8, F' is smooth near p; for all i > 0.
This establishes Theorem 2.8.

Theorem 2.5 follows from Theorem 2.8 and Theorem 2.9.

As a consequence of Theorem 4.8, we immediately have

Corollary 4.9. Let M C C**', M' C C*** be two smooth strongly pseudoconvex real hy-
persurfaces (n > 1,k > 1), F : M — M' be a C*~smooth CR map. Assume that
ranks(F,p) < n+ 1 everywhere in M. Then F is smooth.

Proof. We may assume that F' is nonconstant. By a well known argument using Hopf’s
lemma as in the Appendix, dF' : Tp(l’O)M — TS0y s injective at every p € M. Note that

(p)
rank (F,p) =n+1 for all p € M by Lemma 4.1. By Theorem 4.8 (note that in this case, the
proof showed that we did not need F to be C*), we arrive at the conclusion. [

Since a CR diffeomorphism of class C* of a k—nondegenerate manifold is k—nondegenerate,
Thoerem 2.3 implies the following:

Corollary 4.10. Let M C CV be a generic CR manifold that is ko—nondegenerate. Suppose
H = (Hy,--- ,Hy): M — M is a CR diffeomorphism of class C*® such that for some py € M
and an open convex cone I' C RY,

WF(HJ)|PO C F?j = 17 7N

where d is the CR codimension of M. Then H is C* in some neighborhood of pq.
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5 Appendix

5.1 On CR mappings into a lower dimensional target

In this appendix we include a result which shows why we don’t consider the case when the
target manifold has a lower CR dimension. The result is known to experts but we have
presented it here since we are not aware of a reference.

Theorem 5.1. Let M c CN, M’ C CV' be smooth strongly pseudoconvex real hypersurfaces
with N > 2,N' > 2. Let ' : M — M’ be a CR mapping of class C*. Assume that N' < N.

Then F' is a constant map.

Proof. Suppose that F' is nonconstant. Fix p € M,p’ € M’ with p’ = F(p). Choose suitable
coordinates in CV and CN' near p, p’ such that: p=0,p' = 0 and M is locally defined by

= ZN —2ZN

r(Z,7)=— T

+ 212+ -+ 2y N1 + ¢(Z, Z) near p,
M’ is locally defined by

p(Z',7') = e + 212"+t 22 (2, Z7) near pl.

o1

Here Z = (z1,--+ ,2n),Z' = (2}, , Zy) are the coordinates of C and CN' respectively.
Moreover, ¢(Z, Z) = (|Z| ),0*(Z',Z") = O(]Z'|?) are real-valued smooth functions near p, p’
respectively. We write

or 0 8Ti’T /—( or 8)’1§i§N_17

- %azz - 8zi (921\; aZN aZN (92N 871\[

which are vector fields tangent to M near the central point 0.
Write F' = (Fy,---, Fy/). Near 0 on M we have

— Fni — Fyr — - _
FF)=——"— " + i+ 4+ Fyv 1 Fnvoo +0%(F F) = 0. 5.1
p( ) Wi 1B N1 Fne 1+ ¢ ( ) (5.1)

Applying L;;1 < i < N — 1 to equation (5.1) and evaluating at 0, one easily gets

8FN/
021»

b=0,1<i<N-—1.
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Similarly, by applying LiL;,1 < k,I < N — 1 to equation (5.1) and evaluating at 0, we get,

82 FN/
82;4921

lb=0,1<kI<N-—1.

By the Lewy extension theorem, F' extends holomorphically to the pseudoconvex side of
M denoted by €2. We may assume that €) is a union of analytic discs attached to M. That is,
for each g € €2, there exists a continuous function

G:A—=CY (A={¢eC:|¢|<1})

analytic on A such that G(A) C Q, G(0A) C M, and G(0) = ¢. For each such G, the
function po F oG is continuous on A, subharmonic on A and vanishes on JA. If this function
is constant for every analytic disc G attached to M, then F' would map €2 into M’ which would
contradict the strict pseudoconvexity of M’ unless F' is constant. This allows us to apply the
maximum principle and the Hopf lemma to the subharmonic function p(F, F) < 0 near p over
2 to conclude that

9 B N1
——(p(F. F = —(—Im(Fy F))lo=-A<0 5.2
e P Pl = Gy Im() + 3 I . 62)
for some A > 0, that is,
—0 0 0 FN/ —FN/ 1 8FN/ 871\;/ 8FN/
<82N Ozn 2v/—1 o= =3 Doy | OEn Jlo Dzn o (53)
Here we have used the fact that
T(p(F,F)) =0 (5.4)
which implies %FTJ;’\O = %JAV]’ . Hence we can write:
Fno = Xzn + O(|2n|Z] + |2n?) +0(|Z)%), 2= (z1,...,25-1) (5.5)
N-1
Fy=bjay+ Y ayz+0(Z)),1<j < N' -1, (5.6)

i=1

where b; € C,a;; € C,1 <i< N —1,1<j <N'—1. That is,
(Fla"' 7FN’—1) :ZN(b17"' 7bN’—1)+(zla"' 7ZN—1)A+(FA117"' aFN’—1>7 (57)
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where A = (a;;)(N—1)x(v—1) is an (N — 1) x (N’ — 1) matrix, and F; = O(|Z)?), for any
1 <j < N —1. Next we write Z = (z, zy), where Z = (z1,- -+, zy_1), and we introduce the
notion of weighted degree: For a function h on M, we write h € 0,(s) if

_ h(tZ, 22N, 12, t%2y)
lim

t—0+ ts

—0

uniformly with respect to (2, 2y) &~ 0 in CV~1 x C. That is, we equip z, zy with weighted
degrees 1, 2 respectively.
From equation (5.1)

FN/ — FN/
24/—1

whenever zy = u + v/—1(|Z]? + ¢(Z, Z)) near 0. We can rewrite equation (5.8) in terms of u
and Z by using equations (5.5),(5.6),(5.7):

= (F17 Tt 7FN/71)(F17 e )Flel)t + QS*(F,F), (58)

)\’5|2 + Owt(2> = (21, tee ,ZN_l)AA*(gl, tee ,gN_l)t + Owt<2) (59)
Then by collecting terms on both sides of weighted degree two, one easily gets,
)\|E|2 - (217 Tty ZN—I)AA*(Eh e 7§N—1)t7

which implies that,
My_1 = AA", (5.10)

where Iy _1 is the (N — 1) x (N — 1) identity matrix. But A is an (N — 1) x (N’ — 1) matrix
with rank at most N’ — 1 and so (5.10) can not hold since N —1 < N — 1.
UJ
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