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1. Notational Conventions & Definitions

In these notes, R always denotes a ring with 1, unless otherwise
stated.

1.1. Notation. subset, proper subset, ideal, right/left ideal, right mod-
ule, bimodule

1.2. Definitions. simple, semisimple, prime, semiprime, primitive, semiprim-
itive, artinian, noetherian, nil, nilpotent, regular, dedekind-finite, es-
sential, uniform, goldie

2. Introduction

Definition 2.1. A right R-module, MR, is an abelian group under
addition together with a map MR × R → MR, written (m, r) 7→ mr,
such that the following hold, for all m,n ∈MR, and all r, s ∈ R:

(1) (m+ n)r = mr + nr
(2) m(r + s) = mr +ms
(3) m(rs) = (mr)s
(4) m · 1 = m

1
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If the ring R is understood, we usually drop the subscript and just
write M in place of MR. A subgroup N of MR is a submodule if NR ⊆
N . Moreover, if N is a submodule of M , then we can form the factor
module M/N in the obvious way. As a set, we have M/N = {m+N |
m ∈ M }, and the action of R is given by (m + N)r = mr + N . We
also have the concept of an R-module homomorphism, which is a map
ϕ : MR →M ′

R such that ϕ(m+n) = ϕ(m)+ϕ(n), and ϕ(mr) = ϕ(m)r,
for all m,n ∈ MR, r ∈ R. The image of a module under an R-module
homomorphism is again an R-module, and all the usual isomorphism
theorems are still true.

Example 2.2.

• A vector space is a module over a field.
• R is naturally a right R-module, in which case the submodules

of RR are exactly the right ideals of R.

Exercise 2.3. Take any ring R and prove that the two-sided ideals of
Mn(R) are of the form Mn(I), where I is a two-sided ideal of R. Show
that the analogous statement for one-sided ideals is not true.

Corollary 2.4. Mn(k) = {n×n matrices over the field k}, is a simple
ring.

Definition 2.5. A module MR is finitely generated if there are el-
ements m1, . . . ,mn ∈ M such that, given m ∈ M , there are ele-
ments r1, . . . , rn ∈ R with m = m1r1 + · · ·mnrn. That is, MR =
m1R + . . .+mnR.

Example 2.6. R = k[x, y], the polynomial ring in two commuting
variables over the field k. The ideal I = xR+yR is a finitely generated
R-module. (generated by x and y).

Remark 2.7.

(1) If MR is finitely generated, and ϕ is an R-module homomor-
phism, then ϕ(MR) is also finitely generated (by the images of
the generators).

(2) A submodule of a finitely generated module needn’t be finitely
generated. For example, let V be an infinite dimensional vector
space over a field K. Let R = { (v, α) | v ∈ V, α ∈ K } with
operations

(v, α) + (w, β) = (v + w, α + β)

(v, α)(w, β) = (βv + αw, αβ).
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R is a ring with identity (0, 1), (and hence finitely generated
by (0, 1) as a right R-module). However, (V, 0) is an ideal (and
thus a right R-submodule) which is not finitely generated.

(3)

(
R R
0 Q

)
⊂ M2(R) is a ring, and I =

(
0 R
0 0

)
is a right ideal

which is not finitely generated. (because RQ is not finitely gen-
erated).

Definition 2.8. We say a module MR is noetherian if every submodule
ofMR is finitely generated. Similarly, we say a ringR is right noetherian
if RR is a noetherian module.

Theorem 2.9. The following are equivalent:

(1) MR is noetherian
(2) MR satisfies a.c.c. ( = ascending chain condition) on submod-

ules: given any ascending chain

M1 ⊆M2 ⊆M3 ⊆ · · ·
of submodules, there is an integer r such that

Mr = Mr+1 = Mr+2 = · · · .
(3) Any nonempty family of submodules of MR has a maximal ele-

ment (with respect to inclusion).

Proof. (1)⇒ (2) Suppose we have a chain of submodules

M1 ⊆M2 ⊆ · · ·
Note that

⋃
Mi is a submodule of M , which by hypothesis is finitely

generated, by say {m1, . . .mt}. Since this set is finite, there must be
some r for which all of the mi are in Mr. Thus

⋃
Mi =

∑
miR ⊆Mr.

Hence Mr = Mr+1 = Mr+2 = · · · , and the chain stabilizes.
(2) ⇒ (3) Suppose F is a nonempty family of submodules of MR.

Choose Mi ∈ F . If Mi is maximal, we’re done. Otherwise we can find
M2 ∈ F with M1 ⊂ M2. If M2 is maximal, we’re done. Otherwise we
can find M3 ∈ F with M2 ⊂M3. Since we’re assuming (2), this process
must terminate, at which point we’ve arrived at a maximal element of
F .

(3)⇒ (1) Let N be any submodule of MR, and set

F = {all finitely generated submodules of N}.
Let N ′ be a maximal element of F . If N ′ = N we’re done. Otherwise
N ′ ( N , so we can find an element n ∈ N \ N ′. Then N ′ + nR
is a finitely generated submodule of N which properly contains N ′,
contradicting our choice of N ′. �
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Definition 2.10. We say a module MR is artinian if it satisfies d.c.c
(= descending chain condition) on submodules. That is, given any
descending chain

M1 ⊇M2 ⊇M3 ⊇ · · ·
of submodules, there is an integer r such that

Mr = Mr+1 = Mr+2 = · · · .

Example 2.11.

(1) Any finite dimensional vector space Vk is an artinian k-module.
(2) ZZ is noetherian, but not artinian. For example the chain 2Z )

22Z ) 23Z ) · · · doesn’t terminate.
(3) If RR is a commutative integral domain with d.c.c., then R is

a field. (proof: Choose 0 6= a ∈ R and consider the chain of
ideals

aR ⊇ a2R ⊇ a3R · · ·
which must stabilize. So anR = an+1R for some n. Then an =
an+1r for some r ∈ R, and since R is a domain, we can cancel
an to get 1 = ar, so a is a unit.)

(4) (Q/Z)Z has a Z-submodule

Zp∞ = { g ∈ Q/Z | png = 0 for some n ∈ N },

which is artinian, but not noetherian. The Z-submodules of
Zp∞ are all of the form Zpn = { g ∈ Q/Z | png = 0 }, and we
have a strictly increasing chain

Zp ⊂ Zp2 ⊂ Zp3 ⊂ · · ·

Proposition 2.12. The following are equivalent for a right R-module
M :

(1) MR has d.c.c. on submodules.
(2) Any nonempty family of submodules of MR has a minimal ele-

ment (with respect to inclusion).

Proof. Mimic the proof in the noetherian case. �

Proposition 2.13. Any homomorphic image of a noetherian (resp.
artinian) R-module is noetherian (resp. artinian).

The converse of this result is a useful type of induction for noetherian
(resp. artinian) modules.

Proposition 2.14. Let N be an R-submodule of M . If N and M/N
are noetherian (resp. artinian) then M is noetherian (resp. artinian).
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Proof. We will do the proof in the noetherian case. The artinian case
is similar. Let

M1 ⊆M2 ⊆ · · ·
be an ascending chain of submodules of M . Then

M1 ∩N ⊆M2 ∩N ⊆ · · ·

is an ascending chain of submodules of N , and

(M1 +N)/N ⊆ (M2 +N)/N ⊆ · · ·

is an ascending chain of submodules of M/N . Both of these chains
stabilize, so choose r ∈ N large enough so that

Mr ∩N = Mr+1 ∩N = · · ·

and

(Mr +N)/N = (Mr +N)/N = · · · .
Then

Mr+1 = Mr+1 ∩ (Mr+1 +N) = Mr+1 ∩ (Mr +N)

= Mr + (Mr+1 ∩N) = Mr + (Mr ∩N) = Mr

where the third equality follows from the modular law. Thus the chain
stabilizes, so M is noetherian. �

Proposition 2.15. A finite direct sum of noetherian (resp. artinian)
modules is again noetherian (resp. artinian)

Proof. The proof is by induction on the number of modules. Suppose
M1, · · · ,Mn are noetherian R-modules. We view Mn as a submodule
of M1 ⊕ . . . ⊕ Mn in the usual way. Then (M1 ⊕ . . . ⊕ Mn)/Mn

∼=
M1 ⊕ . . . ⊕Mn−1 is noetherian by induction. Now apply the previous
proposition. �

Of course, the previous proposition is not true for infinite direct
sums.

Definition 2.16. A ring R is called right noetherian (resp. artinian)
if RR is a noetherian (resp. artinian) R-module.

Note that any homomorphic image of a right noetherian (resp. ar-
tinian) ring is right noetherian (resp. artinian).

Proposition 2.17. If R is right noetherian (resp. artinian), then any
finitely generated right R-module is noetherian (resp. artinian).
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Proof. Again, we will do the noetherian case only, as the artinian case
is similar. Let M be a finitely generated R-module, generated by
m1, · · · ,mn. If n = 1, then M = mR. Set I = { r ∈ R | mr =
0 }. Then I is a right ideal of R, and we have an R-module isomor-
phism M ∼= RR/I. Since RR has a.c.c., so does M . Now suppose
M = m1R+ . . .+mnR. Set N = mnR, a submodule of M . Note that
we have M/N ∼=

∑n−1
i=1 miR, where mi = mi + mnR. By induction,

M/N is noetherian, and by the first part, N is noetherian, hence M is
noetherian as well. �

Remark 2.18. We have the following application: If RR satisfies a.c.c.
(resp. d.c.c.) and S ⊇ R is any ring such that SR is a finitely generated
right R-module, then SS satisfies a.c.c. (resp. d.c.c.)

In particular, if R satisfies a.c.c. (resp. d.c.c.) then so too does
Mn(R).

There is also the dual notion of left R-module, the definition of which
should be clear. Everything we have said about right modules could
be repeated for left modules. However some care should be taken not
to confuse one’s left and right. For example, we can have a module M
which is both a right and left R-module, but these module structures
can be wildly different. Here is an amusing example.

Example 2.19 (Small). The ring R =

(
Z Q
0 Q

)
is right noetherian

but not left noetherian. To see this, note that R is a finitely generated

right

(
Z 0
0 Q

)
-module, (generated by

(
0 1
0 0

)
). Moreover,

(
Z 0
0 Q

)
is

isomorphic to a direct sum of two noetherian rings, hence is noetherian.
Thus we see that R is right noetherian by the previous proposition.
Next we need to show that R is not left noetherian. To that end, note

that

(
0 Q
0 0

)
is a left R-submodule of R which is not finitely generated.

(If it were, then Q would be a finitely generated Z-module, which it’s
not. In fact, if S is any commutative integral domain (not a field), then
it’s field of quotients is never a finitely generated S-module.)

Even if the ring R is commutative, the right and left module actions
of R on itself needn’t be the same. As a specific example, we have the
following.

Example 2.20. Consider M = C ⊗R C. M is naturally a C-module
on both sides (the action is just multiplication), but these actions are
not the same. M is a 4-dimensional vector space over R, with basis
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{e1 = 1⊗ 1, e2 = 1⊗ i, e3 = i⊗ 1, e4 = i⊗ i}. But note that ie1 = e3,
while e1i = e2.

3. Rings with d.c.c.

Definition 3.1. An element r ∈ R is nilpotent if rn = 0 for some
positive integer n. A right ideal I Cr R is nil if every element of I is
nilpotent, and I is nilpotent if In = 0 for some n ∈ N.

Note that nilpotent ideals are always nil, but not vice versa. For
an example of a nil but not nilpotent ideal, consider a polynomial
ring in countably many variables over a field k[x1, x2, x3, . . .], and set
I = (x2

1, x
3
2, x

4
3, . . .). Let R = k[x1, x2, x3, . . .]/I, and write xi for the

image of xi in R. Then (check!) (x1, x2, . . .) is a nil ideal of R which is
not nilpotent.

Also, we have the following

Proposition 3.2. (1) If I is a nilpotent right ideal of R, then RI
is a nilpotent two-sided ideal of R.

(2) If I and J are nilpotent right ideals of R, then I + J is also a
nilpotent right ideal.

(3) A ring R has no nonzero nilpotent ideals iff R has no nonzero
nilpotent right ideals.

Definition 3.3. A ring R is called semiprime if R has no nonzero
nilpotent ideals.

Remark 3.4 (Warning). Semiprime rings with d.c.c. are sometimes
referred to as semisimple rings with d.c.c. (though not in these notes)
so beware. Really the situation is this: A ring R is called semiprime
if it has no nonzero nilpotent ideals, whereas R is semisimple if R
is (isomorphic to) a finite direct sum of simple rings. (simple = no
nontrivial ideals). The confusion arises because if R has d.c.c. on right
or left ideals, then these two concepts are the same, as we will see.

Proposition 3.5. Suppose R is a ring with no nonzero nilpotent right
ideals. If I Cr R is a minimal right ideal of R, then I = eR for some
idempotent e ∈ R. (recall that e ∈ R is called idempotent if e2 = e.)

Proof. Since I2 6= 0, there is some x ∈ I such that xI 6= 0. Since xI is
a right ideal of R which is contained in I, we must have xI = I, since I
is minimal. Since x ∈ I = xI, we can find some e ∈ I such that xe = x,
which implies that xe2 = xe, or x(e2 − e) = 0. Now consider the set
r. annI(x) = { a ∈ I | xa = 0 }. This is a right ideal of R contained
in I, and since xI 6= (0), we have r. annI(x) = 0, again by minimality
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of I. Now, since x(e2 − e) = 0, we have e2 − e ∈ r. annI(x) = 0, thus
e2 = e.

Lastly, since e ∈ I, eR is a right ideal contained in I, and is nonzero
since 0 6= e ∈ eR. Thus eR = I by minimality of I once again. �

Proposition 3.6. Suppose R has no nonzero nilpotent ideals and let
e ∈ R be idempotent. Then eR is a minimal right ideal of R iff eRe is
a division ring (with e as identity element).

Proof. (⇐) Suppose eRe is a division ring (it is clear that the identity
element must then be e) and I Cr R is a nonzero right ideal of R
contained in eR. Then for any er ∈ I, we have e(er) = er, so eI =
I. Next, since I 6= 0, we have (eI)2 6= 0 because R has no nonzero
nilpotent right ideals. This then implies that eIe 6= 0. Hence there is
some a ∈ I with eae 6= 0. Since eRe is a division ring, we can find
ese ∈ eRe such that (eae)(ese) = e. But then e = (eae)(ese) is an
element of I, and so eR ⊆ I. As we assumed that I ⊆ eR, we have
eR = I, and so eR is minimal.

(⇒) Suppose eR is a minimal right ideal of R. Choose r ∈ R with
ere 6= 0, which we can find since R has no nonzero nilpotent right
ideals. Then 0 6= ereR ⊆ eR, so ereR = eR by minimality of eR.
Since e2 = e ∈ R, we can find s ∈ R such that eres = e. Then
(ere)(ese) = e, so ere has an inverse in eRe, and eRe is a division
ring. �

Remark 3.7. Note that the hypothesis that R have no nonzero nilpo-
tent ideals is necessary. For let k be a field, and consider the ring

R =

(
k k
0 k

)
. We have e = e11 ∈ R is idempotent, and eR =

(
k k
0 0

)
is a right ideal of R which is not minimal since it contains the right

ideal

(
0 k
0 0

)
. But eRe ∼= k is a field, so also a division ring.

In a semiprime ring which is also right artinian, every right ideal is
generated by an idempotent. This is the next

Proposition 3.8. Let R be a semiprime right artinian ring. If I Cr R
is any right ideal of R, then I = eR for some idempotent e.

Proof. Let I be a right ideal of R. If I is minimal then I = eR for some
idempotent e and we’re done. Otherwise, since R is artinian, I contains
a minimal right ideal which must be of the form eR for some idempotent
e. Let e be such that r. annI(e) = { r ∈ I | er = 0 } is minimal (which
we can do since R is artinian). If r. annI(e) = 0, then (since e2 = e) for
any x ∈ I, we have 0 = e(ex− x). So ex− x ∈ r. annI(e) = 0, whence
ex = x, and thus I ⊆ eR, so I = eR.
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If r. annI(e) 6= 0, then we can find 0 6= e′ ∈ r. annI(e) with (e′)2 = e′.
Set e∗ = e + e′ − e′e. Then (e∗)2 = e∗, and ee∗ = e 6= 0, so e∗ 6= 0.
Moreover, since e∗r = 0 =⇒ er = ee∗r = 0, we have r. annI(e

∗) ⊆
r. annI(e) so r. annI(e

∗) = r. annI(e) be our choice of e. Now note
that e′ = e∗e′ 6= 0, whereas ee′ = 0, so r. annI(e

∗) ⊂ r. annI(e) which
contradicts our choice of e. We conclude that r. annI(e) = 0 and so
I = eR as desired. �

Proposition 3.9. Let R be semiprime right artinian. If I is an ideal
of R with I = eR for some idempotent e, then I = Re.

Proof. Pick x ∈ I. Then (xe − x)e = 0, so (xe − x)eR = 0. If
xe− x 6= 0, then xe− x ∈ l. annR(I) = { r ∈ R | rI = 0 } is a nonzero
ideal contained in I. We claim that l. annR(I)2 = 0. Since e is a
right identity element for I, we have l. annR(I)e = l. annR(I), whence
l. annR(I)2 = (l. annR(I)e)2 = 0. Since R has no nonzero nilpotent
ideals, we have l. annR(I) = 0, so xe = x and I = Re. �

Corollary 3.10. Let R be a semiprime right artinian ring, and I =
eR = Re an ideal of R. Then e is in the center of R.

Proof. By the previous proposition, we see that e acts as the identity
element on I. So pick x ∈ R and note that since ex and xe are in I,
we have ex = (ex)e = e(xe) = xe. �

Exercise 3.11. If R has no nonzero nilpotent elements, then every
idempotent is in the center of R.

Summarizing, we see that if R is semiprime right artinian, then every
right (or left) ideal is generated by an idempotent, and every two-sided
ideal is generated by a central idempotent.

Definition 3.12. A ring R is simple if R has no nontrivial proper
two-sided ideals. (ie the only two-sided ideals are 0 and R).

Example 3.13.

• Any field, or more generally any division ring, is simple.
• Mn(D) is simple, for D any division ring (by a previous exer-

cise).
• More generally, Mn(R) is simple iff R is simple.

Note that if D is a division ring, then Mn(D) is a finite dimensional
vector space over D, so is artinian. Thus we have examples of sim-
ple artinian rings. The first part of the Artin-Wedderburn theorem
says that these are all the simple artinian rings. Moreover, Artin-
Wedderburn characterizes all semisimple artinian rings as finite direct
sums of matrix rings over division rings. This is what we now aim for.
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Theorem 3.14 (Schur’s Lemma). If M is a simple right R-module ( =
has no nonzero proper submodules), then EndR(M) is a division ring.

Proof. Just note that kernels and images of R-module homomorphisms
are submodules. More specifically, suppose ϕ ∈ EndR(M). If ϕ 6= 0,
then ϕ(M) is a nonzero submodule of M , hence ϕ(M) = M since M
is simple. Similarly, kerϕ 6= M since ϕ 6= 0, so kerϕ = 0. Thus ϕ is
an isomorphism, and EndR(M) is a division ring. �

Proposition 3.15. Let R be a simple artinian ring and let eR be a
minimal right ideal (which is thus a simple R-module). Then eR is a
finite dimensional (left) vector space over the division ring eRe.

Proof. All that remains to be shown is that eR is finite dimensional
over eRe. Note that ReR is a nonzero ideal of R, hence ReR = R
by simplicity of R. We can then write 1 =

∑
riesi for some finite

collection of elements ri, si ∈ R. Then er = er1 =
∑

(errie)si, so eR ⊆∑
(eRe)si, which shows that eR is finite dimensional over eRe. �

Proposition 3.16. Let R be a simple artinian ring, then all simple
R-modules are isomorphic.

Proof. Let eR be a minimal right ideal, and M = MR a simple right R-
module. We will show that M ∼= eR as R-modules. First, annR(M) =
{ r ∈ R | Mr = 0 } is a proper two-sided ideal of R, so annR(M) = 0
since R is simple. Thus MeR = M since MeR is a nonzero submodule
of M , and M is simple. We can then conclude that there is m ∈M such
that meR 6= 0, whence meR = M , again by simplicity of M . So we get
an R-module homomorphism ϕ : eR→ M given by ϕ(er) = mer, and
of course ϕ is an isomorphism since eR and M are simple modules. �

Theorem 3.17. Let R be a semiprime artinian ring, then every R-
module is a finite direct sum of simple submodules.

WE SHOULD REDO THE NEXT TWO THEOREMS TO PER-
TAIN TO RIGHT IDEALS

AND MAKE CLEAR WHICH SIDE OF eR THINGS ARE ACT-
ING ON

Proposition 3.18. Let e ∈ R be idempotent, then EndR(eR) ∼= eRe.

Proof. Consider the map f 7→ f(e)e from EndR(eR) to eRe. We claim
that this is an R-module isomorphism. Choose f ∈ EndR(eR), and
suppose f(e) = et, then f(er) = f(e)r = f(e)er = (ete)er, so f
acts on eR by left multiplication by f(e)e = ete ∈ eRe, yielding the
isomorphism. �
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Theorem 3.19 (Rieffel). Let R be a simple ring, and 0 6= A a left
ideal of R. Set R′ = EndR(A) (viewed as a ring of right operators on
A), then R ∼= EndR′(A) as rings.

Proof. To clarify, since R acts on the left of A, we are thinking of
EndR(A) as a ring of right operators on A, in contrast to EndR′(A),
which we thing of as acting on the left of A. That is, A is naturally an
(R,R′)-bimodule, and we show that the ring of R′-module endomor-
phisms consists of left multiplication by elements of R.

Let λ : R→ EndR′(A) denote the ring homomorphism sending r ∈ R
to left multiplication by r. kerλ is a two-sided ideal of R, and since
R is simple, λ is injective. Now, 0 6= AR C R, and again since R is
simple, we must have AR = R, and thus λ(A)λ(R) = λ(R). Now, for
any x, y ∈ A, and f ∈ EndR′(A), we have f(xy) = f(x)y, because right
multiplication by y is an R-endomorphism of A. Hence λ(A) is a left
ideal of EndR′(A), and so

EndR′(A) = EndR′(A)λ(R) = EndR′(A)λ(A)λ(R) = λ(A)λ(R) = λ(R)

which shows that λ is surjective as well. �

Remark 3.20. We have the following “duality” between R and R′

above: R ∼= EndR′(A) and R′ ∼= EndR(A). For this reason, the above
theorem is sometimes referred to as the “Double Centralizer Property”.

Corollary 3.21. If R is simple right artinian, then we have a ring
isomorphism R ∼= Mn(D), where D is a division ring.

Proof. Let eR be a minimal right ideal of R. Then by Schur’s Lemma,
D = eRe ∼= EndR(eR) is a division ring (acting on the left of eR), and
we have a ring isomorphism R ∼= EndD(eR) (acting on the right of eR).
Since dimD(eR) = n <∞, we see that R ∼= Mn(D), as desired. �

Remark 3.22. The integer n (and the division ring D) are both
uniquely determined by R. Moreover, since a matrix ring over a di-
vision ring is both right and left artinian, we see that a simple right
artinian ring is also left artinian.

Theorem 3.23. Let R be a ring with nonzero ideals B1, . . . , Br and
C1, . . . , Cs with

R = B1 ⊕ · · · ⊕Br = C1 ⊕ · · · ⊕ Cs
and such that each Bi as well as each Ci is not a direct sum of two
nonzero subideals. Then r = s and after a permutation of indices,
Bi = Ci for all i.
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Proof. Viewing the Bi’s as rings, R ∼= B1 ⊕ · · · ⊕ Br. Under this
isomorphism, the ideal C1 corresponds to an ideal I1 ⊕ · · · ⊕ Ir, where
each Ii C Bi. Since C1 is not a direct sum of subideals, all but one
of these Ii is zero. We may thus assume that C1 = I1, so C1 ⊆ B1.
Similarly, we get B1 ⊆ Ci for some i. But then C1 ⊆ Ci implies that
i = 1. Repeating this argument for the other Ci’s finishes the proof. �

Theorem 3.24 (Wedderburn-Artin). Let R be a semiprime right ar-
tinian ring. Then

R ∼= Mn1(D1)⊕ · · · ⊕Mnr(Dr)

for suitable division rings D1, . . . , Dr and positive integers n1, . . . , nr.
Moreover, the integer r, as well as the pairs (ni, Di) are uniquely de-
termined (up to permutation).

3.1. Finite Dimensional Algebras. We now discuss Wedderburn’s
Theorem in the context of finite dimensional algebras over fields. As
we will see, in this case things behave even nicer than in the general
case of rings. We start with a definition.

Definition 3.25. Let K be a field. An algebra over K, or a K-algebra,
is a ring A which is also a vector space over K. The ring structure and
the vector space structure are related by demanding that

α(xy) = (αx)y = x(αy), for all α ∈ K, x, y ∈ A.

Note that if A has an identity element, then the condition just says
that A contains K in it’s center. We say that A is a finite dimensional
algebra if A is finite dimensional as a vector space over K.

For the remainder of this section, A is a finite dimensional K algebra.
We will be particularly interested in finite dimensional semisimple K-
algebras. First, if A is simple, then we know that A ∼= Mn(D) for some
division ring D. Thus A must have a 1, and moreover we view K as
contained in A as the set of scalar matrices {αI | α ∈ K }. Also, we
have D as a subring of A as the set of scalar matrices { dI | d ∈ D }.
Then we see that K ⊆ D ⊂ A = Mn(D). Since A is finite dimensional
overK, so too isD. It is an easy exercise to see that if K is algebraically
closed, then in fact D = K, from which it follows that in case K is
algebraically closed, A ∼= Mn(K).

Next suppose that K is algebraically closed, and that A is semisim-
ple and finite dimensional over K. It follows just as before that A ∼=⊕

Mni(K) is a direct sum of full matrix algebras over K. This is basi-
cally the original form of Wedderburn’s theorem (though he was really
only interested in the case K = C). Artin later modified Wedderburn’s
result to apply to semisimple rings with d.c.c.
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We wish to prove another theorem of Wedderburn, but first we need
a small digression to discuss the process of “extending the base field”.
Suppose A is a K-algebra, and F is a field extension of K. We can
then form the tensor product A ⊗K F , which is spanned, as a vector
space over K, by all simple tensors a ⊗ α, where a ∈ A and α ∈ F .
(remark: elements of A⊗K F are (finite) sums of simple tensors!) The
tensor product is bilinear, and in addition satisfies

k(a⊗α) = (ka)⊗α = a⊗(kα) = (a⊗α)k, for all a ∈ A,α ∈ F, k ∈ K.

We make A ⊗K F into a ring by defining multiplication between
simple tensors via

(a⊗ α)(b⊗ β) = ab⊗ αβ

and extending this product linearly. Note that since K is central, we
have that A ⊗K F is a K-algebra. But moreover, we can view F as
contained in A⊗K F as the set of all elements of the form 1⊗ α, and
in this way (since 1⊗ α is central for all α ∈ F ), we see that A⊗K F
is also an F -algebra. Moreover, we see that the dimension of A⊗K F
over F is the same as the dimension of A over K:

dimF A⊗K F = dimK(A).

With this in hand, we can now prove the following pleasant result

Theorem 3.26 (Wedderburn). Let A be a finite dimensional K-algebra
in which every element of A is a sum of nilpotent elements. Then A is
nilpotent.

Proof. If K is not algebraically closed (ie K 6= K, consider K̃ :=
A ⊗K K. Then dimK̃(A ⊗K K) = dimK(A), and every element of
A ⊗K K is again a sum of nilpotents. Thus without loss, we may
assume that K is algebraically closed. Let N denote the radical of
A, which is nilpotent since A is artinian. If N = A, then we’re done.
Otherwise, consider A = A/N , and note that every element of A is also
a sum of nilpotents (because this condition clearly passes to quotient
algebras). By Wedderburn’s theorem, A ∼=

⊕
Mni(K). Since each

Mni(K) is clearly an ideal of A, we see that A has, say, Mn1(K) as a
homomorphic image. Thus we conclude that every element of Mn1(K)
is a sum of nilpotent elements. But this is absurd, for a nilpotent
matrix must have trace zero, whereas a sum of matrices of trace zero
needn’t have trace zero. �
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4. Nil and Nilpotent Ideals

Recall that a ring R is called semiprime if it has no nonzero nilpotent
ideals. In this section we are interested in semiprime (right) noetherian
rings, so we begin with some examples of such.

Example 4.1. The following are semiprime (right) noetherian.

• Any domain.
• Z,Mn(Z), F [x]
• F [x, y]/(xy) has no nilpotent elements, so is semiprime. Note

that this ring is not a domain.

Theorem 4.2 (Hopkins-Levitzki). If R has d.c.c. on right ideals, then
any nil right or left ideal is nilpotent.

Proof. Let ICrR be a nil right ideal of R, and consider the descending
chain of right ideals

I ⊇ I2 ⊇ I3 · · · .
Since R is right artinian, this chain must terminate, so we can find n ∈
N such that In = In+1 = In+2 = · · · . If In = 0, we’re done. Otherwise,
among all right ideals J such that JIn 6= 0, choose a minimal one, say
J0. Fix an element a ∈ J0, so that we have

(aIn)In = aIn 6= 0

Thus aIn is a right ideal contained in J0, so by minimality of J0, we
have aIn = J0. We can then find x ∈ In with ax = a. But this says
(1 − x)a = 0, and since x is nilpotent, 1 − x is invertible, and thus
a = 0, a contradiction. �

Theorem 4.3. If Rx is a nil left ideal, then xR is a nil right ideal.

Proof. Choose xr ∈ xR. Then (xr)(xr)(xr) · · · = x(rx)(rx)r · · · ,
which is eventually 0 since rx is nilpotent. �

Theorem 4.4 (Hopkins). If R is a right (resp. left) artinian ring (with
1), then R is right (resp. left) noetherian.

Proof. We need to show that every right ideal of R is finitely generated.
Let

F = { I Cr R | I is not finitely generated }
and choose I ∈ F which is minimal. Let N denote the radical of R. If
IN = 0, then I is a right R/N -module under the action a(r+N) = ar.
(This is well defined precisely because N annihilates I.) Moreover, the
right R-module structure of I is exactly the same as the right R/N -
module structure of I, because all elements of N act as 0. Now, since
R/N is semiprime right artinian, as a right R/N -module, I is a direct
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sum of simple right R/N -modules. But since I satisfies d.c.c. on R/N -
submodules, this sum must be finite. Since a simple R/N -module is
generated by a single element, we see that I is finitely generated as a
right R/N -module, hence also as right R-module.

Next, suppose IN 6= 0. Then IN ⊆ I, and this must be a proper
containment. For if IN = I, then I = INk for all k ∈ N, and since N
is nilpotent, I would be 0, a contradiction. Hence IN ⊂ I. Consider
the factor module I/IN , a right R-module. We have (I/IN)N = 0,
so by the first part, I/IN is finitely generated as a right R/N -module,
and thus also as a right R-module. Since IN is strictly contained in I,
IN /∈ F , ie. IN is a finitely generated R-module. Thus I is a finitely
generated extension of a finitely generated right R-module, so is finitely
generated as well. �

Note that the converse is false, for Z is a ring which is noetherian
but not artinian. Moreover, the theorem is false for modules, as Zp∞ is
an artinian but not noetherian Z-module. Also, the assumption that
R has an identity is necessary, as the following example shows.

Example 4.5. Consider the abelian group Zp∞ . Defining multipli-
cation between any two elements to be zero makes Zp∞ into a ring
(without 1) which is artinian, but not noetherian.

Theorem 4.6 (Hopkins). Let R satisfy d.c.c. on right ideals, and set
N =

∑
{nilpotent ideals}. Then N is nilpotent.

Proof. Let Ñ be a maximal nilpotent ideal of R, which we can find

since R is noetherian. If U is any nilpotent ideal of R, then Ñ + U is

also nilpotent. Since Ñ + U ⊇ Ñ , we have Ñ + U = Ñ by our choice

of Ñ . Thus U ⊆ Ñ , which proves the claim. �

We have shown that if R is right artinian, then there is a maximal
nilpotent ideal N of R which, of course, contains all nil right or left
ideals of R. This ideal N is called the (Jacobson) radical of R.

Proposition 4.7. R/N has no nonzero nilpotent ideals.

Proof. Nonzero ideals of R/N are of the form I/N where N ⊂ I C R,
and (I/N)k = N iff Ik ⊆ N . Since N is nilpotent, we have (Ik)n = 0
where n is the index of nilpotence of N . Hence I ⊆ N , a contradiction.

�

Theorem 4.8 (Hopkins). If R satisfies a.c.c. on right ideals, then∑
{nilpotent ideals} is nilpotent.

Proof. �
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Theorem 4.9. If R is semiprime noetherian, then R has no nonzero
nil one-sided ideals.

Proof. Suppose I is a nonzero nil right ideal. Choose a ∈ I such that
r. ann(a) = {x ∈ R | ax = 0 } is maximal (which is guaranteed to
exist since R is right noetherian). Next we claim that aRa 6= 0, for
if aRa = 0, then aR is a right ideal which squares to 0, hence is 0,
which implies that a = 0. Now, since aRa 6= 0, ∃b ∈ R such that
aba 6= 0. But r. ann(a) ⊆ r. ann(aba), so by our choice of a, we must
have r. ann(a) = r. ann(aba). Thus ababa 6= 0, since otherwise aba = 0.
Repeating this argument, we get (ab)na 6= 0 for all n ∈ N, hence ab is
a nonnilpotent element of I, so I is not nil.

Note that if we had instead started with a left ideal I, then we would
have ba is a nonnilpotent element of I, since (ab)na = a(ba)n 6= 0 for
all n ∈ N. �

Theorem 4.10 (Levitzki). Let R be right noetherian. If I is a nil
one-sided ideal, then I is nilpotent.

Proof. Let N be a maximal nilpotent ideal, so R/N is semiprime, and
let I be a nil right ideal. If I ⊆ N , then we’re done. Otherwise,
Consider (I +N)/N , a nil right ideal of R/N . By the previous result,
R/N has no nonzero nil right ideals, so I +N ⊆ N =⇒ I ⊆ N . �

Definition 4.11. A ring R is called Dedekind-finite if xy = 1 =⇒
yx = 1.

Example 4.12. We construct a ring which is not Dedekind-finite. Let
V be a countable dimensional vector space over a field F , with basis
{v1, v2, v3, · · ·}, and set R = EndF (V ). Define two “shift operators” in
R as follows: T : vi 7→ vi+1, and S : vi 7→ vi−1 for i ≥ 2 and S : v1 7→ 0.
Then we have ST = 1, but TS 6= 1.

Proposition 4.13. If R is right noetherian, then R is Dedekind-finite.

Proof. Let ab = 1, and suppose that ba 6= 1. Now, we can form a chain
of right ideals, r. ann(a) ⊆ r. ann(a2) ⊆ r. ann(a3) ⊆ · · · , and since R is
right noetherian, this chain must terminate. Next, ab = 1 =⇒ anbn =
1 for any n ∈ N, so by replaicing a and b by suitable powers, we may
assume that r. ann(a) = r. ann(a2). Next, we have 0 = a(1 − ba), so
1− ba ∈ r. ann(a). We also have a2(1− b2a2) = 0, so a(1− b2a2) = 0.
But then 0 = a − ba2 = (1 − ba)a, and multiplying on the right by b
yields 1 = ba, a contradiction. �

Let R be a ring with elements a, b such that ab = 1 but ba 6= 1. For
all i, j ∈ N, set

eij = (bi−1aj−1 − biaj)
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Then (check!) the set {eij} forms an infinite set of matrix units, in the
sense that they satisfy eijekl = δjkeil. This shows that any ring which is
not Dedekind-finite is neither artinian nor noetherian (on either side).

5. Quotient Rings

Given a ring R, whose elements aren’t necessarily units, we’re inter-
ested in when we can “invert” some subset of the elements of R. That
is, we’d like to construct an overring of R where some collection of
elements of R become invertible. This is a process called localization,
and though it is easy to do for, say commutative integral domains, in
the noncommutative case things get a bit trickier.

Definition 5.1. An element r ∈ R is called regular if r is not a zero
divisor.

Let R be a ring, and Q ⊇ R an overring with the property that given
q ∈ Q, we can write q = ac−1 for some a, c ∈ R. Here c−1 ∈ Q is a
two-sided inverse of c. Let S = { r ∈ R | r is invertible in Q }. Then S
is multiplicatively closed, and consists of regular elements.

Definition 5.2 (Ore Condition). A subset S of a ring R satisfies the
right Ore condition if given a ∈ R, s ∈ S, there are elements b ∈ R,
s1 ∈ S, such that as1 = sb. Equivalently, S must satisfy aS ∩ sR 6= ∅
for all a ∈ R, s ∈ S.

Remark 5.3. If R is a domain, and S = R \ 0, then the right Ore
condition assumes the following simple form: For all nonzero a, s ∈ R,
we must have aR ∩ sR 6= 0. Such rings are called right Ore domains.

Note that in the situation above, where Q ⊇ R is an overring whose
elements are of the form ac−1, the set S = { r ∈ R | r is invertible in Q }
clearly satisfies the right Ore condition.

If S is any multiplicatively closed subset of R which satisfies the
right Ore condition, then we can localize with respect to S. That is,
there exists an overring RS ⊇ R with the following properties

(1) If s ∈ S, then s is invertible in RS
(2) Given x ∈ RS , we can write x = as−1 for some a ∈ R, and

s ∈ S.

We’re particularly interested in the case S = {all regular elements of R}.
In the favorable situation, where S satisfies the right Ore condition, we
call RS the classical quotient ring of R, sometimes denoted Q(R), and
call R an order in RS . As an easy example, if R is any commutative
integral domain, then S = {all regular elements of R} = R \ 0, and S
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is obviously right Ore, so R has a classical quotient ring Q(R). This is
precisely how one forms, eg. Q from Z.

As another example, consider M2(Z). Any matrix x ∈ M2(Q) can
be written as x = AC−1, where A ∈ M2(Z), and C = cI is a scalar
matrix in M2(Z). (By finding a common denominator c for the entries
of x.) Thus Q(M2(Z)) = M2(Q), and M2(Z) is an order in M2(Q).

Here’s one more. Set R = F [x, y]/(xy), where F is a field. Then R
is semiprime noetherian, and Q(R) ∼= F (x)⊕ F (y). (check!)

We now compute RS in the case where R is artinian. So let a ∈ R be
regular. We have a descending chain of right ideals aR ⊇ a2R ⊇ · · · ,
which must terminate. So there is some minimal n ∈ N such that
anR = an+1R. It then follows that an = an+1r for some r ∈ R, so
an(1 − ar) = 0. Since a is regular, we can cancel to get ar = 1, so
a is right invertible. Since R is also left artinian, we can repeat this
argument on the left to see that a is also left invertible. We have thus
shown that if R is artinian, then every regular element is invertible, so
R is it’s own classical ring of quotients.

Of course, not all rings will have a classical quotient ring. For
example, let F 〈x, y〉 denote the free algebra over a field F in the
(noncommuting) variables x and y. Then F 〈x, y〉 is a domain, but
xF 〈x, y〉 ∩ yf〈x, y〉 = 0, so F 〈x, y〉 is not right Ore.

Of course, the free algebra above isn’t noetherian, and one might
suspect that right noetherian integral domains are Ore. This is the
content of the next

Theorem 5.4 (Goldie). A right noetherian integral domain is right
Ore.

Proof. Let R be a right noetherian integral domain, and choose 0 6=
a, b ∈ R. If aR∩bR 6= 0 we’re done, otherwise ab ∈ aR, and since aR∩
bR = 0, ab /∈ bR. Thus the right ideal bR+ abR properly contains bR.
Similarly, the right ideal bR+ abR+ a2bR properly contains bR+ abR.
Iterating this process produces a chain of right ideals

bR ⊂ bR+ abR ⊂ bR+ abR+ a2bR ⊂ bR+ abR+ a2bR+ a3bR ⊂ · · · .

Since R is right noetherian, this chain must terminate, so there is some
minimal n ∈ N such that

anbR ⊆ bR + abR + . . .+ an−1bR.
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which yields

anb = bx0 + abx1 + . . .+ an−1bxn−1, for some xi ∈ R.
=⇒ −bx0 = a(bx1 + . . .+ an−2bxn−1 − an−1b)

and by minimality of n, neither side is zero. But this is a contradiction,
because it shows that bR ∩ aR 6= 0 �

The noetherian hypothesis is actually not entirely necessary, all that
is really needed is that the domain R does not contain an infinite direct
sum of right ideals, and this is what Goldie originally noticed.

In some sense the free algebra example above is essentially the only
sort of domain without a classical ring of quotients. More precisely, we
have the following

Theorem 5.5. If R is an integral domain (containing a central field
F ) which is not right Ore, then R contains a free F -algebra on two
variables.

Proof. Since R is not right Ore, there are elements x, y ∈ R with xR∩
yR = 0. We claim that Fx, y, the subalgebra of R generated by x and
y, is free. For if not, we have a relation of the form xf + yg + α = 0,
where f, g are nonzero “polynomials” in x and y, and α ∈ F . If α = 0,
then xf = y(−g) ∈ xR ∩ yR, which is a contradiction. If α 6= 0,
then xfy + ygy + αy = 0, so xfy + y(gy + α) = 0. If fy = 0, then
f = 0 since R is a domain. We then get yg + α = 0, so y is invertible
(and thus yR = R) which is a contradiction. Similarly, gy + α 6= 0.
Thus x(fy) = y(gy + α) is a nonzero element in xR ∩ yR, again a
contradiction. Hence Fx, y is free. �

So far, we have only discussed the formation of right quotient rings;
that is, in the overring, inverses appear on the right hand side. We
could instead have done everything on the left, arriving at, for example,
the definition of a left Ore domain, which is a domain R satisfying
Ra ∩ Rb 6= 0 for all a, b ∈ R. In the favorable case where both left
and right quotient rings exist, we shall see that they are naturally
isomorphic, but for now let us give an example of a domain which is
Ore on only one side.

Example 5.6 (A right Ore domain which is not left Ore). Let F be
a field, and let σ : F → F be a field endomorphism which is not onto.
(eg. t 7→ t2, as a function from R(t) to itself) Let R = F [x;σ] denote
the “twisted polynomial ring” in the variable x. Elements of R are
right polynomials, by which we mean that coefficients are written on
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the right, but the variable x does not commute with elements of F .
Instead, we impose the relation

ax = xσ(a), a ∈ F.
Just as in the case of an ordinary polynomial ring, one can show that
every right ideal of R is principal, so R is right noetherian, hence right
Ore by the above theorem. But we claim that R is not left Ore. To see
this, let c ∈ F be any element not in the image of σ. If it were the case
that Rx ∩Rxc 6= 0, then we could find elements b, d ∈ F such that

xibx = xidxc

which implies that xi+1σ(b) = xi+1σ(d)c, and thus that σ(b) = σ(d)c,
and since σ is an endomorphism, we get c = σ(b)σ(d)−1 = σ(bd−1), a
contradiction.

Note that we could instead take as R the ring of left polynomials
(with multiplication xa = σ(a)x), to get a left but not right Ore do-
main.

Application (Jategaonkar): The free algebra F 〈x, y〉 can be embed-
ded into a division ring. As above, we take R to be a right but not
left Ore domain which is an algebra over the field F . Then R contains
F 〈x, y〉 as a subalgebra. Moreover, since R is right Ore, it is contained
in it’s quotient division ring Q. Thus we have F 〈x, y〉 ⊆ R ⊆ Q.

Example 5.7. The quotient ring of a noetherian ring needn’t be ar-
tinian. We do this by constructing a non-artinian ring which is it’s own
classical quotient ring. Let C[[x, y]] denote the ring of formal power se-
ries in the variables x and y over C, and let R = C[[x, y]]/〈x2, xy〉.
Let x and y denote the images of x and y in R. We note that R
is noetherian because C[[x, y]] is noetherian (analogously to the usual
Hilbert basis argument), but R is not artinian because R/〈x〉 ∼= C[[y]],
which is not artinian since y is a regular element of C[[y]] which is not
invertible. Next, set M = 〈x, y〉, and note that M is a maximal ideal
of R because R/M ∼= C. In fact, M is the unique maximal ideal of R,
because it contains every proper ideal of R. Now suppose that a ∈ R
is not invertible, so aR ( R. Thus aR ⊆M , and since xM = 0, we see
that xaR = 0, so a is a zero divisor. Taking the contrapositive shows
that every regular element of R is a unit, so that R is it’s own classical
ring of quotients.

We now head towards Goldie’s Theorem, that a ring R has a semisim-
ple artinian ring of quotients iff R is semiprime right Goldie. This will
show, in particular, that semiprime right noetherian rings have quotient
rings which are semisimple artinian. We begin with some definitions.
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Definition 5.8. A right ideal I of a ring R is essential if I ∩L 6= 0 for
every nonzero right ideal L of R.

More generally, we call a submodule NR ⊆ MR essential (in MR)
if N ∩ N ′ 6= 0 whenever N ′ is a nonzero submodule of M . Also, an
R-module M is uniform if every nonzero submodule is essential. That
is, if the intersection of any two nonzero submodules is again nonzero.

Let R be a right noetherian ring, and fix an element a ∈ R. Then
we claim that there is some integer n for which anR ∩ r. ann(a) = 0.
To see this, note that we have an ascending chain of right ideals

r. ann(a) ⊆ r. ann(a2) ⊆ r. ann(a3) ⊆ · · ·
which must terminate, since the ring is noetherian. So there is some n
for which r. ann(an) = r. ann(an+1) = · · · . Now, if s ∈ R is such that
ans 6= 0 and ans ∈ r. ann(a), then ans ∈ r. ann(an), so a2ns = 0. This
implies that s ∈ r. ann(a2n) = r. ann(an), which is a contradiction.

Definition 5.9. Let R be a ring, and set

S(R) = { a ∈ R | r. ann(a) is an essential right ideal of R },
the (right) singular ideal of R.

We need to justify this definition by showing that S(R) is in fact an
ideal of R. To see this, note that if r. ann(a1) and r. ann(a2) are essential
right ideals of R, then so too is their intersection. Moreover, r. ann(a1+
a2) ⊇ r. ann(a1) ∩ r. ann(a2), so S(R) is closed under addition. Next,
for r ∈ R, we have r. ann(ra) ⊇ r. ann(a), so if a ∈ S(R), so too is
ra. Lastly, ar ∈ S(R) because given any nonzero right ideal I Cr R, if
rI = 0, then arI = 0, so I ⊆ r. ann(ar). If rI 6= 0, then since r. ann(a)
is essential, and since rI Cr R we have rI ∩ r. ann(a) 6= 0. We can then
find some nonzero ri ∈ rI ∩ r. ann(a). So i ∈ r. ann(ar) ∩ I, and hence
r. ann(ar) is essential in R.

Theorem 5.10. If R is right noetherian, then S(R) is a nilpotent ideal
of R.

Proof. Pick a ∈ S(R). Then r. ann(a) is essential, and since we can
find n so that anR ∩ r. ann(a) = 0, we must have anR = 0. Since R
has a 1, this says that an = 0, so S(R) is nil. Now, Levitzki’s theorem
says that a nil ideal of a right noetherian ring is nilpotent, so S(R) is
nilpotent. �

Corollary 5.11. If R is semiprime right noetherian, then S(R) = 0.

We have introduced essential ideals because they play an integral
role in Goldie’s theorem, but we haven’t yet shown how to actually
produce an essential ideal. We do this now.
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Proposition 5.12. Let R be any ring. If I Cr R is not essential, then
there is some right ideal K Cr R such that I ⊕K is essential.

Proof. Use Zorn’s Lemma to find a right ideal K maximal with respect
to I ∩K = 0. If I ⊕K is not essential, then we can find a right ideal
U with I ⊕K ∩U = 0 which implies I ∩K ⊕U = 0 which contradicts
our choice of K. �

Moreover, in a right noetherian ring, any regular element generates
an essential right ideal. In fact, we only need a right regular element,
this is the next

Theorem 5.13. Let R be right noetherian. If r. ann(a) = 0, then aR
is essential.

Proof. Choose 0 6= I Cr R and suppose that aR ∩ I = 0. Then aR⊕ I
is a right ideal which properly contains I. Next, since r. ann(a) = 0,
left multiplication by a is an injective R-module homomorphism of R,
so preserves the direct sum. So a2R ⊕ aI is also a direct sum, and
of course we have a2R ⊕ aI ⊆ aR. Substituting for aR, we see that
a2R⊕aI⊕I is also direct. Doing this again, we have a3R⊕a2I⊕aI⊕I
is direct. Continuing, we produce an infinite direct sum of right ideals

I ⊕ aI ⊕ a2I ⊕ a3I ⊕ · · ·
which is impossible, since R is noetherian. �

Proposition 5.14. Let R be semiprime right noetherian. Then every
right regular element is also left regular.

Proof. Suppose r. ann(a) = 0, so that aR is an essential right ideal. If
x ∈ l. ann(a), then r. ann(x) ⊇ aR, so r. ann(x) 6= 0. Now, we can find
n such that xnR ∩ r. ann(x) = 0, and since r. ann(x) 6= 0, we conclude
that xnR = 0, so x is nilpotent. This shows that r. ann(x) is a nil right
ideal and hence nilpotent by Levitzki’s theorem. This is a contradiction
because R is semiprime. �

We should note that in the proof of the last theorem, all that was
needed was that R did not contain an infinite direct sum of right ideals.
This is, strictly speaking, a weaker condition than being right noether-
ian, and it motivates the following definition.

Definition 5.15. R is right Goldie if (1) R satisfies a.c.c. on right
annihilator ideals, and (2) R does not contain an infinite direct sum of
right ideals.

At this point, one may reasonably demand an example of a ring
which is right Goldie, but not right noetherian. Perhaps the easiest
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such is a polynomial ring in infinitely many variables over a field. It is
an Ore domain (hence Goldie), but not noetherian.

Theorem 5.16. Let M , N be right R-modules, and let ϕ : M → N be
an R-module homomorphism. If L is essential in N , then ϕ−1 = {m ∈
M | ϕ(m) ∈ L } is essential in M .

Proof. Let B ⊂ M be a nonzero submodule of M . We need to show
that B ∩ ϕ−1(L) 6= 0. Note that kerϕ ⊂ ϕ−1(L), so if ϕ(B) = 0, we’re
done. We may then assume that ϕ(B) 6= 0. Since L is essential in N ,
we have ϕ(B) ∩ L 6= 0, so we can find some b ∈ B with the property
that 0 6= ϕ(b) ∈ L. But then we have 0 6= b ∈ B ∩ ϕ−1(L), which
finishes the proof. �

As a special case of the previous lemma, suppose that I Cr R is
an essential right ideal of R. Fix an element a ∈ I, and note that
left multiplication by a is an R-module homomorphism from R to I.
It then follows that the inverse image of I under this map is also an
essential right ideal of R. For historical reasons, we denote this inverse
image by a−1(I) := { r ∈ R | ar ∈ I }. This proves the following

Theorem 5.17. If ICrR is an essential right ideal of R, then for any
a ∈ R, a−1(I) = { r ∈ R | ar ∈ I } is essential in R.

Theorem 5.18 (Goldie). Let R be semiprime right noetherian, and
I Cr R a nonzero right ideal. Then there is some element a ∈ I with
r. ann(a) ∩ I = 0.

Proof. We break the proof up into two cases, depending on whether or
not I is a uniform right ideal of R. So suppose first that I is uniform.
Note then that if 0 6= K Cr R, with K ⊆ I, then for any a ∈ I, we
have a−1(K) = {x ∈ R | ax ∈ K } is an essential right ideal of R.
Next, since R is semiprime, I2 6= 0, so we can find nonzero elements
a, a′ ∈ I with aa′ =6= 0. We will now show that this is the element
a we are looking for. If r. ann(a) ∩ I = 0 we’re done. Otherwise, set
B = r. ann(a) ∩ I. Then B is essential in I by uniformity, and so
(a′)−1(B) is essential in R. Now, if x ∈ (a′)−1(B), then aa′x = 0,
because a′x ∈ r. ann(a). This shows that (a′)−1(B) ⊆ r. ann(aa′), so in
particular r. ann(aa′) is essential in R. This shows that aa′ ∈ S(R), the
right singular ideal of R. Since R is semiprime, S(R) = 0, so aa′ = 0,
a contradiction.

Now suppose that I is not uniform, and choose a right ideal I0 ⊆ I
maximal with respect to the property of containing an element x ∈ I0
with r. ann(x) ∩ I0 = 0. If I0 = I we’re done. Now note that since R
has no infinite direct sums of right ideals, we can find a uniform right
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ideal U ⊆ r. ann(x) ∩ I0. Choose such a U which contains an element
u ∈ U with r. ann(u) ∩ U = 0. Next, note that we have I0 ( I0 ⊕ U .
Now, x+u ∈ I0⊕U , and we will show that r. ann(x+u)∩(I0⊕U) = 0,
which will contradict our choice of I0. Next, if (x+u)(x′+u′) = 0, then
xx′+xu′+ux′+uu′ = 0. Since U ⊆ r. ann(x), this implies that xu′ = 0,
so we are left with xx′+ux′+uu′ = 0. Since xx′ ∈ I0 and ux′+uu′ ∈ U
and the sum is direct, we see that xx′ = 0 and ux′ + uu′ = 0. Thus
x′ = 0 because r. ann(x)∩ I0 = 0. Also, uu′ = 0 implies u′ = 0 because
r. ann(u) ∩ U = 0. This finishes the proof. �

If R is instead right Goldie (not necessarily right noetherian), we can
modify the latter half of the proof by inducting on the Goldie rank of
R. This would strengthen the previous lemma.

We have shown that in a semiprime right noetherian ring, a regular
element generates an essential right ideal. The next lemma is essentially
the converse.

Theorem 5.19. Let R be a semiprime right noetherian ring. Then
I Cr R is essential iff I contains a regular element.

Proof. (⇐) Suppose a ∈ I is regular, and suppose that aR is not
essential. Then there is some right ideal K Cr R with aR∩K = 0. We
want to show that K + aK + · · · + ai−1K ∩ aiK = 0 for all i ∈ N. If
not, then we can write

aiki = k0 + ak1 + · · ·+ ai−1ki−1

which implies that

k0 = a[−(k1 + ak2 + · · ·+ ai−1ki−1) + ai−1ki]

so k0 ∈ aK ∩ K = 0. Continuing in this fashion, we get k0 = k1 =
. . . = ki−1 = 0. This shows that we have an infinite direct sum of right
ideal K⊕ aK⊕ a2K⊕· · · , contradicting the fact that R is noetherian.
We thus conclude that aR is essential, and since aR ⊆ I, I is essential
as well.

(⇒) Now let I Cr R be essential. Since R is semiprime right noe-
therian, I is not nil. Thus there is a0 ∈ I which is not nilpotent,
and without loss, we may assume that r. ann(a0) = r. ann(a2

0). Sup-
pose r. ann(a0) 6= 0. Then since I is essential, we have r. ann(a0) ∩
I 6= 0, which implies that r. ann(a0) ∩ I is not nil, so we can find
a1 ∈ r. ann(a0) ∩ I with a1 not nilpotent, and again without loss
we may assume that r. ann(a1) = r. ann(a2

1). If r. ann(a1) 6= 0, re-
peat this argument to produce a sequence of elements {ai} with ai ∈
r. ann(a0) ∩ r. ann(a1) ∩ · · · ∩ r. ann(ai−1), and r. ann(ai) = r. ann(a2

i ).
Now, we claim that (a0R + . . . + ai−1R) ∩ aiR = 0 for all i. For
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otherwise, we can write airi =
∑

j<i ajrj, which implies that a2
0r0 =

a2
1r1 = · · · = a2

i−1ri−1 since ai ∈ r. ann(aj) for j < i. We then con-
clude that r0 ∈ r. ann(a2

0) = r. ann(a0), and similarly rj ∈ r. ann(aj)
for j < i. Thus airi = 0. Now, since R is right noetherian, it can-
not contain an infinite direct sums of right ideals, so the process of
producing these ai must terminate. Hence there is some n for which
r. ann(a0)∩· · ·∩ r. ann(an) = 0. Then a = a0 + . . .+an is right regular,
as ax = 0 =⇒ aiax = a2

ix = 0, so x ∈ r. ann(a0)∩· · ·∩ r. ann(an). �

In fact, the hypothesis that R be right noetherian can be weakened
to right Goldie, and the proof can be easily modified to prove the
following.

Theorem 5.20. Let R be semiprime right Goldie, and I Cr R. Then
I is essential in R iff I contains a (right) regular element.

Proof. Left to the reader �

Now, suppose that R is semiprime right Goldie, and choose a, c ∈ R
regular. Then cR is an essential right ideal of R, and so a−1(cR) is
also essential. By the last lemma, a−1(cR) contains a regular element,
say b, and we have ab = cd for some d ∈ R. This is precisely the Ore
condition, so we have shown the following

Theorem 5.21. If R is semiprime right Goldie, then S = { regular elements of R }
is right Ore, and so R has a right classical ring of quotients.

Corollary 5.22. If R is semiprime right noetherian, then R has a
right classical quotient ring.

5.1. Ideals in Q(R). Having shown that semiprime right Goldie rings
have rings of quotients, we next want to study these resulting quotient
rings. We will see that the quotient ring of a semiprime right Goldie
ring is semisimple artinian (and hence a finite direct sum of matrix
rings over division rings). First we start by relating the (right) ideal
structures of a ring R and it’s quotient ring Q(R).

Throughout this section, R is a ring with classical quotient ring
Q = Q(R) (so all regular elements of R are invertible in the overring
Q). The first lemma shows that we can find “common denominators”.

Theorem 5.23. If d1, . . . , dt are regular elements of R, then there
is a regular element d ∈ R, and elements c1, . . . , ct in R such that
d−1
i = cid

−1 for all i.

Proof. �

Recall that S(R) denotes the set of regular elements of R. The
previous lemma immediately implies the following
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Corollary 5.24. If I Cr R, then IQ = { id−1 | i ∈ I, d ∈ S(R) }
Theorem 5.25. If K Cr Q, then (K ∩R)Q = K.

Proof. Given k ∈ K, we can write k = ac−1 for some a, c ∈ R, c regular.
Then kc ∈ K ∩ R, and hence k = (kc)c−1 ∈ (K ∩ R)Q. The reverse
containment is obvious. �

Theorem 5.26. If I1⊕ · · · In is a direct sum of right ideals of R, then
I1Q⊕ · · · InQ = (I1 ⊕ · · · In)Q is a direct sum of right ideals of Q.

Proof. For the equality then I1Q ⊕ · · · InQ = (I1 ⊕ · · · In)Q, just find
common denominators. That the sum is direct is a consequence of the
previous lemma. �

Recall that given a right ideal in any ring, we can find a “comple-
mentary” right ideal such that the direct sum is essential. If the ring
is Q, the quotient ring of a semiprime right Goldie ring R, then the
complement can actually be chosen so that the direct sum is all of Q.
This is the next

Theorem 5.27. Let K CrQ. Then there is a right ideal K ′CrQ such
that K ⊕K ′ = Q.

Proof. Consider (K ∩ R) Cr R. We can then find I Cr R such that
(K ∩ R)⊕ I is essential in R, hence contains a regular element. Then
((K ∩ R) ⊕ I)Q = Q because every regular element of R is a unit in
Q. Thus K ⊕ IQ = (K ∩R)Q⊕ IQ = Q. �

As a result, we can now show that Q is semisimple artinian. Choose
any right ideal K Cr Q, and write Q = K ⊕K ′. Then 1 = e+ (1− e)
with e ∈ K, (1 − e) ∈ K ′. Clearly e2 = e, so K = eQ, which shows
that every right ideal is generated by an idempotent. Hence Q is right
noetherian (since right ideals are f.g.) Moreover, this shows that Q
has no nonzero nil (right) ideals. For 0 6= e idempotent implies that
e is not nilpotent. Thus Q has no nonzero nilpotent (right) ideals, so
Q is semiprime. All that remains is to show that Q is right artinian.
If this is not the case, then we can find a strictly descending chain of
idempotent generated right ideals

e1Q ) e2Q ) e3Q ) · · · .
By a previous lemma, given any right ideal I of Q, we can find a

complement K such that I ⊕ K = Q. By taking intersections with
e1Q, we can then find a right ideal U2Cr Q such that e1Q = U2⊕ e2Q.
Similarly, we can write e2Q = U3 ⊕ e3Q for some right ideal U3 Cr Q.
Continuing this process yields an infinite direct sum

U2 ⊕ U3 ⊕ · · · ,
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which is a contradiction, because Q has no infinite direct sums of right
ideals. Thus Q is also right artinian (and hence artinian by Wedder-
burn).

So we have shown that if R is semiprime right Goldie, then Q is
semisimple artinian. If in fact R is prime right Goldie, then one may
expect the quotient ring to be simple artinian. We can now show that
this is in fact the case

Theorem 5.28. Let R be prime right Goldie. Then Q is simple ar-
tinian.

Proof. We already know that Q is artinian, so we just need to show that
Q has no nontrivial proper ideals. If 0 6= I CQ, then 0 6= (I ∩R)CR.
In a prime ring, every nonzero ideal is essential as a right ideal (check!),
so we know that I ∩ R contains a regular element of R. Since regular
elements of R become invertible in Q, we then have I = (I ∩ R)Q =
Q. �

We wish to prove the converse to Goldie’s theorem as well, but first
we need a digression in order to discuss annihilator ideals in more detail.

Proposition 5.29. Let X be any subset of a ring R, and set K =
r. ann(X) = { r ∈ R | Xr = 0 }. Then r. ann(l. ann(K)) = K.

Proof. Clearly K ⊆ r. ann(l. ann(K)), because l. ann(K)K = 0. Now,
suppose that r ∈ r. ann(l. ann(K)), so l. ann(K)r = 0. Since XK = 0,
we have X ⊆ l. ann(K), so Xr = 0, ie x ∈ K. �

This proposition says that there is a 1-1, order reversing correspon-
dence between right and left annihilator ideals of R. As a consequence,
we get the following

Corollary 5.30. R satisfies a.c.c. on right annihilators iff R satisfies
d.c.c. on left annihilators.

Moreover, if T ⊆ R is a subring of R, and X is any subset of R,
then r. annT (X) = r. annR(X) ∩ T , which shows that T inherits chain
conditions on annihilators from R. In other words, if R satisfies a.c.c.
or d.c.c. on right (resp. left) annihilators, then so does T . (Contrast
this with the fact that subrings needn’t inherit chain conditions on one
sided ideals, ie a subring of an artinian ring needn’t be artinian).

Example 5.31. A ring which satisfies a.c.c. on right annihilators, but
not on left annihilators. Let A1 denote the first Weyl algebra (over C)
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and let I be any nonzero right ideal of A1. Then A1/I is a (C,A1)-
bimodule under usual multiplication, and we can form a ring

R =

(
C A1/I
0 0

)
.

We will show that R satisfies a.c.c. on right annihilators, but doesn’t
satisfy d.c.c. on right annihilators, so doesn’t satisfy a.c.c. on left
annihilators.

Since A1 is a domain, I is an essential right ideal, so contains a
nonzero regular element, say c. Since A1 is right Ore, given any a ∈ A1,
we can write ab = cd for some b, d ∈ A1. Thus (a+I)b = I. This shows
that any finite subset of A1/I has a nonzero right annihilator (ie A1/I
is a torsion A1-module). We can then lift this to R in the obvious way.
If X ⊂ A1/I is any finite subset, then

r. annR(

(
0 X
0 0

)
) =

(
C A1/I
0 r. annA1(X)

)
Now, suppose that R satisfied d.c.c. on right annihilators, and let M
be a minimal element in the set of right annihilators of finite subsets of
A1/I. So M = r. annA1(v1 + I, . . . , vn + I) for some elements vi ∈ A1.
Now we claim that (A1/I)M = 0. For choose any a ∈ A1, and note
that r. annA1(v1 + I, . . . , vn + I, a + I) ⊆ M , so this right annihilator
equals M by minimality. This shows that M annihilates all of A1/I,
so r. annA1(A1/I) 6= 0. But since A1/I is a right A1-module, it’s right
annihilator is a two-sided ideal of A1, and since A1 is simple, we have
(A1/I)A1 = 0. This is clearly a contradiction.

Note that as an added bonus, we see that this ring R cannot be
embedded into an artinian ring (for then it would inherit d.c.c. on
right annihilators from the artinian overring).

We can now get back to Goldie’s theorem. We want to show that
the converse to Goldie’s theorem is also true, which we do now.

Theorem 5.32. If Q is semisimple artinian, then R is semiprime right
Goldie.

Proof. First we need to show that R is right Goldie. This follows easily
from the correspondence between right ideals of Q and right ideals of R.
Next, suppose that 0 6= N CR satisfies N2 = 0. Then NQCrQ. (note
that (NQ)2 needn’t be 0). If NQ = Q, then NQ contains a unit, and
since R is an order in Q, N contains a regular element of R. This is a
contradiction, so NQ ( Q. Consider l. annR(N) = { r ∈ R | rN = 0 }.
We will show that l. annR(N) is an essential right ideal of R. To see
this, let 0 6= I Cr R. If IN = 0, then I ⊆ l. annR(N) and we’re done.



NONCOMMUTATIVE RING THEORY NOTES 29

Otherwise, 0 6= IN ⊆ (I ∩ N), so (IN)N = 0, and we can conclude
that IN ⊆ (I ∩ l. annR(N)). Thus l. annR(N) is essential, so contains
a regular element, say c. But then cN = 0, and since c is regular,
we can cancel to get N = 0, a contradiction. This shows that R is
semiprime. �

Summarizing, we have proved all of Goldie’s theorem, which we now
state as a single result.

Theorem 5.33 (Goldie). A ring R has a classical right quotient ring
Q which is semisimple artinian iff R is semiprime right Goldie.

We now offer an application, which was an open problem for some
time until Goldie’s seminal work. We will assume (as was known at
the time) that nil subrings of semisimple artinian rings are actually
nilpotent (the proof is left as an exercise).

Theorem 5.34. Let R be a right noetherian ring. If N is a nil subring,
then N is nilpotent.

Proof. Let P = P (R) denote the nil radical of R, which is the unique
maximal nilpotent ideal of R by Levitzki’s theorem. If N ⊆ P , we’re
done. Otherwise, N = N/(P ∩N) is a nil subring of R = R/P . Since
R is semiprime right noetherian, it has a quotient ring Q which is
semisimple artinian. Hence N is nilpotent, so some power of N lies in
P . But since P is also nilpotent, taking a large enough power of N
shows that N is nilpotent as well. �

Definition 5.35. An ideal I CR is called prime if whenever A,BCR
with AB ⊆ I, we must have either A ⊆ I or B ⊆ I. We call a ring R
prime if 0 is a prime ideal.

Recall that we call a right artinian ring semisimple if it has no
nonzero nilpotent ideals. In fact, one can define the notion of semisim-
plicity for more general rings (ie. not necessarily artinian), which we
do now.

Definition 5.36. A ring R is called semisimple if every right ideal is
a direct summand of RR. That is, given a right ideal I of R, there is
some right ideal J such that R = I ⊕ J .

Remark 5.37. Note that R is prime iff whenever A,B are nonzero
ideals of R, then AB 6= 0.

Theorem 5.38. If R is prime, then every nonzero ideal of R is essen-
tial.
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Proof. If I, J are nonzero ideals of R, then so too is IJ , which is con-
tained in I ∩ J . �

Proposition 5.39. Let R be a prime ring, 0 6= L Cl R and K Cr R.
Then L ∩K 6= 0.

Proof. KL ⊆ L∩K, so if L∩K = 0 then KL = 0, which implies that
(RK)(LR) = 0. But RK and LR are nonzero two-sided ideals of R, a
contradiction. �

Corollary 5.40. If R is a prime ring with zero divisors, then R has
nonzero nilpotent elements.

Proof. Let 0 6= a, b ∈ R with ab = 0. Then 0 6= Ra Cl R and 0 6=
bR Cr R, so from above we have Ra ∩ bR 6= 0. We can then find
s, t ∈ R with sa = bt, so (sa)2 = sa(bt) = 0. �

6. Division Algebras

Let H denote the algebra of (real) quaternions, and recall that Z(H) =
R, so dimR H = 4, a perfect square. If we start considering other divi-
sion algebras, we will soon see that they always have dimensions over
their centers which are perfect squares. In fact this is no accident, as we
will see that division algebras are intimately related to matrix algebras
(over the larger fields), which will allow us to show prove this somewhat
mysterious observation on dimensions. We start with a definition.

Definition 6.1. An algebra A is a central simple algebra (over a field
F ) if A is simple and Z(A) = F . We sometimes abbreviate this by
saying A is C-S.

Example 6.2.

(1) Any field is central simple over itself.
(2) Mn(F ) is central simple over F .
(3) H is central simple over R.
(4) Any division ring is central simple over its center, which is a

field.
(5) A1(C), the first Weyl algebra, is central simple over C (but not

over R).

The main reason we are interested in central simple algebras is be-
cause they have nice properties with respect to tensor products.

Proposition 6.3. If A is central simple over F and B is any simple
F -algebra, then A⊗F B is central simple over F .
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Proof. In this proof, tensor products are always over F , so we drop the
subscript. Let UCA⊗B be a nonzero ideal, and choose u =

∑
ai⊗bi ∈

U so that the bi are linearly independent over F . Define the length of
u to be the minimal number of ai which appear in such an expression,
and choose u of minimal length in U . Now, if r, s ∈ A, then

(r ⊗ 1)u(s⊗ 1) =
m∑
i=1

(rais)⊗ bi ∈ U.

Now, since A is simple, given any 0 6= a ∈ A, we have AaA = A. By
choosing appropriate r, s ∈ A, we can find u1 ∈ U , also of minimal
length, so that u1 = 1⊗ b1 +a′2⊗ b2 + · · ·+a′m⊗ bm. Now, let a ∈ A be
arbitrary, and note that [a⊗1, u1] := (a⊗1)u−u(a⊗1) ∈ U has shorter
length than u1 because [a⊗ 1, 1⊗ b1] = 0. Thus [a⊗ 1, u1] = 0 by the
minimality of the length of u1. Thus [a, a′2] ⊗ b2 + [a, a′3] ⊗ b3 + · · · +
[a, a′m] ⊗ bm = 0, and so [a, a′i] = 0 for all i because the bi are linearly
independent. This shows that all the a′i are actually in Z(A) = F .
Thus u1 = 1⊗ (b1 + a′2b2 + · · ·+ a′mbm) = 1⊗ b for some b ∈ B. Now,
since B is simple, BbB = B, so U ⊇ (1 ⊗ B)(1 ⊗ b)(1 ⊗ B) = 1 ⊗ B.
Thus U ⊇ (A⊗ 1)(1⊗B) = A⊗B, so A⊗B is simple. �

Corollary 6.4. If A and B are both central simple over F , then A⊗FB
is central simple over F as well.

Proof. We just need to show that Z(A ⊗ B) = F . As in the previous
proof, choose z =

∑
ai⊗bi ∈ Z(A⊗B) with the bi linearly independent.

Then for any a ∈ A, we have

0 = [z, a⊗ 1] =
∑

[ai, a]⊗ b1
and thus [ai, a] = 0 for all i by linear independence of the bi. Thus
all the ai ∈ F . We can then rewrite z as z = 1 ⊗ b for some b ∈ B.
Commuting this with 1⊗b′ shows that b ∈ F as well. Hence Z(A⊗B) =
F ⊗F F ∼= F , as desired. �

Remark 6.5. That A above was actually central simple is crucial. In
general nothing can be said about the tensor product of two simple
algebras. For example, C⊗R C is not even a domain.

Note that any division ring is a central simple algebra over it’s center.

Theorem 6.6. If D is a finite dimensional division algebra such that
dimZ(D)(D) = m <∞, then m is a perfect square.

Proof. Let Z = Z(D), and let Z denote the algebraic closure of Z.
Consider D ⊗Z Z an algebra over Z. Recall that dimZ(D ⊗Z Z) =
dimZ(D). Moreover, D ⊗Z Z is actually central simple over Z. Now,
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by the Weddderburn-Artin theorem, D⊗ZZ ∼= Mt(∆) for some division
ring ∆. But since Z is algebraically closed, and since ∆ is an algebra
over Z, we have ∆ = Z, so D⊗ZZ ∼= Mt(Z). Taking dimensions yields

m = dimZ(D) = dimZ(D ⊗Z Z) = dimZ(Mt(Z)) = t2.

�

Recall that if R is a ring, then Rop denotes the opposite ring. This
is a ring whose underlying group structure is the same as R, but with
the order of multiplication reversed. That is, if we denote elements
of Rop by rop, then we have aopbop = (ba)op. Of course, every ring R
is anti-isomorphic to Rop, and if R is commutative, then R ∼= Rop.
This can happen in the noncommutative case as well, for example
the transpose operator on M2(F ) is an involution and it follows that

M2(F ) ∼= M2(F )op. As another example,

(
Z Q
0 Q

)
is not isomor-

phic to its opposite because it is only noetherian on one side. (In fact,
R ∼= Rop iff R has an involution, but we won’t prove this).

We note that if M is a left R-module, then M is also naturally a
right Rop-module via

m · aop := am

Theorem 6.7. If A is a finite dimensional central simple algebra over
F , then A⊗F Aop ∼= Mn(F ), where n = dimF (A).

Proof. Consider EndF (A), the ring of all F -linear transformations on
the vector space A. We consider A as a (A,Aop)-bimodule using left
and right multiplication. More precisely, give a ∈ A, let λa and ρa
denote left and right multiplication respectively, by a. If we define

Aλ = {λa | a ∈ A } and Aρ = { ρa | a ∈ A }

Then we naturally have Aλ ∼= A and Aρ ∼= Aop as rings. Next note that
Aλ and Aρ commute element-wise by associativity of A. If we denote
the subalgebra of EndF (A) generated by Aλ and Aρ by AλAρ, then we
get a ring homomorphism

φ : A⊗ Aop → AλAρ defined by
∑

ai ⊗ bopi →
∑

λaiρbi .

Since A ⊗ Aop is simple, φ is injective. Moreover, φ is certainly a
surjection onto AλAρ. By counting dimensions, we have dimF (AλAρ) =
dimF (A⊗ Aop) = n2, so AλAρ = EndF (A) ∼= Mn(F ). �
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6.1. Brauer Groups.

Definition 6.8. If A and B are finite dimensional central simple F -
algebras, then we say A is equivalent to B, written A ∼ B, if there
exist integers m,n such that A⊗F Mn(F ) ∼= B ⊗F Mm(F ).

One can check that this is indeed an equivalence relation on the set
of finite dimensional central simple F -algebras. We write [A] for the
equivalence class of A. We can define a multiplication on equivalence
classes via

[A][B] = [A⊗F B].

Under this multiplication, we have [A][F ] = [F ][A] = [A] for any finite
dimensional central simple F -algebra A. Moreover, since A ⊗F Aop ∼=
Mn(F ) for some n, we have

[A][Aop] = [Aop][A] = [F ]

Thus the collection of equivalence classes so defined forms a group,
called the Brauer Group of F , which we denote by Br(F ). The Brauer
group plays a fundamental role in the study of division algebras, rep-
resentation theory, etc. In general, computing the Brauer group of a
given field is difficult, but we can do so in a few simple cases:

Example 6.9.

• Br(C) is trivial, because the only finite dimensional central
simple algebras over C are matrix rings over C. Recall this is
because C is algebraically closed, so there are no finite dimen-
sional division algebras over C.
• Br(R) ∼= Z2. This follows because other than R itself, the only

finite dimensional division algebras over R are C and H.
• A theorem of Tsen shows that Br(C(t)) is trivial (Tsen’s theo-

rem is difficult though).

Next we want to prove a theorem about maximal subfields of division
algebras. First, note that H is a central simple division algebra over
R, and C ⊂ H is a maximal subfield. We see that dimR(C) = 2, and
dimR(H) = 22. This is no accident, as the following theorem shows.

Theorem 6.10. Let D be a finite dimensional division algebra over
F = Z(D), and let K be a maximal subfield of D. Then D ⊗F K ∼=
Mn(K), where n = dimF (K), and dimF (D) = n2.

Proof. We consider D as a vector space over F , and we let D and K
act on D via left and right multiplication, respectively. This gives us
a way of viewing both D and K as subalgebras of EndF (D). To avoid
confusion, we write Dλ and Kρ for the images of D and K respectively
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in EndF (D). (The notation is as in the proof of the previous lemma)
Morover, these two actions commute elementwise because D is associa-
tive. Let DλKρ denote the (noncommutative) subalgebra of EndF (D)
generated by Dλ and Kρ. Since D is naturally a left EndF (D)-module,
D is also a leeft DλKρ-module. As such, D is irreducible, because Dλ

acts transitively on D. Next we claim that the centralizer of DλKρ in
EndF (D) is just Kλ. That is, EndDλKρ(D) = Kρ. Clearly Kρ com-
mutes with DλKρ. Also, since K is a maximal subfield, the centralizer
in D of K is precisely K. It follows that EndDλKρ(D) = Kρ. We then
see that DlambdaKρ

∼= Mt(K) for some t. Now, we have a surjective ring
homomorphism from D ⊗F K to DλKρ which is also injective because
D ⊗F K is simple. Computing dimensions, we see that

t2 = dimK(Mt(K)) = dimK(DλKρ) = dimK(D⊗FK) = dimF (D) = n2

�

As an application, we can answer the following question. Suppose D
is a division ring with center Z, and D′ is a subdivision ring with center
Z ′. If D is finite dimensional over Z, must D′ be finite dimensional
over Z ′? This was an outstanding problem for some time until the
development of PI theory. The answer is yet, and it can be obtained
from a result of Kaplansky about PI rings, but we can now present an
easier proof.

First note that ZZ ′ is a subfield of D. Since D′ is central simple
over Z ′, we know that D′ ⊗Z′ ZZ ′ is simple. Moreover, dimZ′(D

′) =
dimZZ′(D

′ ⊗Z′ ZZ ′), so it is enough to show that D′ ⊗Z′ ZZ ′ is finite
dimensional over ZZ ′. As we have been doing, we get a surjection
from D′ ⊗Z′ ZZ ′ onto D(ZZ ′), which must be an isomorphism since
the former is simple. Now, since D(ZZ ′) ⊆ D, and since D is finite
dimensional over Z, D(ZZ ′) is finite dimensional over Z as well, and
hence also finite dimensional over Z ′ ⊇ Z. This completes the proof.

We turn now to the celebrated Skolem-Noether theorem, which gives
sufficient conditions under which certain ring isomorphisms are given
by conjugation. In particular, we will see that every automorphism of
a simple artinian ring is inner.

Theorem 6.11 (Skolem-Noether). Let R be a simple artinian ring with
center F , a field. Let A and B be F -subalgebras of R, and ϕ : A→ B
an F -algebra isomorphism (so ϕ fixes F element-wise). Then there
exists x ∈ R such that ϕ(a) = x−1ax for all a ∈ A

Before we prove this, let us give some applications to division rings.

Theorem 6.12 (Wedderburn). A finite division ring is a field.
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Proof. Let D be a finite division ring with center Z, and let K be a
maximal subfield of D. We then know that [D : Z] = n2 for some n,
and [K : Z] = n. Since, up to isomorphism, there is but one finite field
of a given cardinality, we have that any two maximal subfields of D are
isomorphic, and moreover such an isomorphism fixes Z element-wise.
Now, if K ′ is any other maximal subfield, then by Skolem-Noether,
there is some x ∈ D such that K ′ = x−1Kx. Also, given any a ∈ D,
Z(a) is contained in a maximal subfield of D. Set D∗ = D − {0}, so
by the previous two remarks, we have

D∗ = ∪x 6=0x
−1K∗x

where K∗ = K − {0}. But D∗ is a finite group, and a finite group
cannot be the union of the conjugates of a proper subgroup. Hence we
must conclude that K∗ = D∗, so K = D is a field. �

Theorem 6.13 (Frobenius). The only noncommutative finite dimen-
sional central simple division algebra over R is H.

Proof. Let D be a division ring with center R, and let K be a maximal
subfield of D. Then K is a finite dimensional field extension of R, so
either K = R, or K ∼= C. By what should be a routine argument at
this point, we have [D : R] = [K : R]2, and since D is not commutative,
[K : R] = 2, ie K ∼= C. So [D : R] = 4, and D contains C as a maximal
subfield. Note that conjugation is an R-algebra automorphism of C, so
by Skolem-Noether, we can find x ∈ D such that x−1(a+ bi)x = a− bi
for any a + bi ∈ C. In particular, we get x−1ix = −i, so ix2 = x2i.
This shows that x2 commutes element-wise with C, hence x2 ∈ C by
maximality of C. We claim that in fact x2 ∈ R. If not, then R(x2)
is a degree 2 extension of R, contained in C, hence R(x2) = C. Now
note that x commutes with x2, so by maximality of C, x ∈ C. But this
is a contradiction, because x doesn’t commute with i. Thus we can
conclude that x2 ∈ R. Moreover, x2 ∈ R<0, because if x2 were positive,
then x ∈ R, again a contradiction because x doesn’t centralize i. We
can then write x2 = −α2 for some α ∈ R. Set j = x/α. Then j2 = −1,
and ji = −ij. If we then consider the subalgebra of D generated by
{1, i, j, ij}, we see that this subalgebra is isomorphic to H, and thus
D ∼= H as desired. �

We next give a generalization, due to Jacobson, of Wedderburn’s
theorem on finite division rings.

Theorem 6.14 (Jacobson). A division ring, algebraic over a finite
field, is commtative.
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Proof. Let F be a finite field, and D a division algebra which is alge-
braic over F . (Note that F ⊆ Z(D)). We wish to show that Z(D) = D,
so suppose there is some element x ∈ D − Z(D). Since x is alge-
braic over F , the field extension F (x) is finite dimensional over F ,
and hence Galois. Thus there is some nontrivial field automorphism
ϕ : F (x) → F (x) which fixes F element-wise. Since ϕ is nontrivial,
ϕ(x) = xr for some r > 1. By Skolem-Noether, ϕ(x) = y−1xy for some
y ∈ D, so we have

y−1xy = xr or xy = yxr.

Let A denote the subalgebra of D generated by x and y. Since A ⊆ D,
A is a domain, algebraic over F , hence is a division ring. Now, we
have [A : F (x)] < ∞ because y is algebraic over F , hence also over
F (x). We already saw that [F (x), F ] <∞, so together these show that
[A : F ] < ∞. But then A is a finite division ring, so A is a field by
Wedderburn’s theorem. This is a contradiction because x and y do not
commute. �

Corollary 6.15. If D is a division ring such that for any x ∈ D, we
have xn(x) = x for some n(x) ∈ N, then D is commutative.

Proof. Just note that D must have positive characteristic because oth-
erwise 2 ∈ D, and 2n 6= 2 for any n ∈ N. Thus D is algebraic over
its prime subfield, which is finite, ad the result follows from the theo-
rem. �

In fact we can generalize Jacobson’s theorem to apply to algebraic
algebras over finite fields which have no nonzero nilpotent elements.
First we need a lemma, due to Andrunakievich, which says that a
reduced ring is a subdirect product of domains.

Definition 6.16. A ring with no nonzero nilpotent elements is called
reduced.

Note that a reduced ring is prime iff it’s a domain. For if R is reduced
and ab = 0, then (bRa)2 = 0, so every element of bRa is nilpotent and
thus bRa = 0. If R is prime and a 6= 0, the left annihilator of the left
ideal Ra must be zero, so in particular b = 0.

We can push this a bit further. Let R be a reduced ring, let S be
any subset of R, and suppose aS = 0. Then (Sa)2 = 0 so Sa = 0.
Hence l. ann(S) = r. ann(S) is an ideal of R. Moreover, R/ l. ann(S) is
reduced. For if a2S = 0, then (aSa)2 = 0 =⇒ aSa = 0 =⇒ (aS)2 =
0 =⇒ aS = 0.
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Theorem 6.17 (Andrunakievich). If R is a reduced ring, then there
is a collection of ideals Px CR such that ∩Px = 0, and each R/Px is a
domain.

Proof. Fix x ∈ R and choose an ideal Px which is disjoint from {xi |
i > 0 } and maximal with respect to R/Px is reduced. We claim that
Px is a prime ideal, so R/Px is a domain by the previous remark. If Px
is not prime we can find ideals A,B CR with A,B ) P and AB ⊆ P .
But then A ∈ l. annR(B), so by the previous remarks, R/A is reduced
and so by our choice of Px, A must contain some power of x. Essentially
the same argument shows that B must contain some power of x as well,
and this is a contradiction because AB ⊆ Px which avoids {xi | i > 0 }.

To finish the proof, just note that x /∈ Px, so ∩x∈RPx = 0.
�

Theorem 6.18. An algebraic domain is a division ring.

Proof. Let R be a domain which is algebraic over F and choose 0 6=
x ∈ R. Then

anx
n + . . .+ a1x+ a0 = 0

and moreover a0 6= 0 because otherwise x would be a zero divisor.
Rearranging terms and dividing through by a0, we get

1 = x(−1/a0)(anx
n−1 + . . .+ a1)

so x is a unit. �

In fact, we’ve actually shown that in any ring, an element which is
both algebraic and regular is invertible.

Theorem 6.19. Let F be a finite field, and R an algebraic F -algebra
with no nonzero nilpotent elements. Then R is commutative.

Proof. By Andrunakievich’s Lemma, we can find a collection of ideals
Iα C R such that ∩Iα = 0 and each R/Iα is a domain. There is a
natural ring injection

R→
∏

R/Iα

given by sending r ∈ R to the element of
∏
R/Iα whose αth component

is r+Iα. This map is an injection because it’s kernel is precisely ∩Iα =
0. Thus it suffices to show that each R/Iα is commutative. But since R
is algebraic over F , so too is each R/Iα, so we just need to show that a
domain, algebraic over a finite field, is commutative. But an algebraic
domain is a division ring, hence each R/Iα is a division ring, algebraic
over a finite field, so is commutative by Jacobson’s theorem. �
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7. Gelfand-Kirillov dimension

We turn now to a useful algebra invariant, first introduced by Gelfand
and Kirillov in 1966 in order to distinguish certain kinds of division
rings. Recall that an algebra A over a field F is called affine if A is
finitely generated as an F -algebra.

Definition 7.1. Let A be an affine F -algebra, and let V ⊆ A be a finite
dimensional F subspace (containing 1) which generates A as algebra.
Let V n denote the subspace spanned by all products of n elements from
V . There is a chain of subspaces

F ⊆ V ⊆ V 2 ⊆ · · · ⊆ ∪n≥0V
n = A

and we define the Gelfand-Kirillov dimension ofA, denoted GKdim(A),
by

GKdim(A) = lim sup
log dim(V n)

log n
.

If A is any F -algebra (not necessarily affine) then we define the
Gelfand-Kirillov dimension of A by

GKdim(A) = sup{GKdim(B) | B is an affine subalgebra of A }.
Although this definition seems to depend upon our particular choice

of generating subspace V , in fact this is mere illusion. For suppose
that W is some other generating subspace (also assumed to contain 1).
Then since A = ∪n≥0V

n, there is some integer s such that W ⊆ V s.
Hence dim(W n) ≤ dim(V sn) and so

log dim(W n)

log n
≤ log dim(V sn)

log sn
· log sn

log n

and since log sn
logn

→ 1 as n→∞, taking limsups shows that the Gelfand-

Kirillov dimension computed via W is at most the Gelfand-Kirillov
dimension computed via V . By symmetry, these must in fact be equal.

Example 7.2.

• Finite dimensional algebras are precisely those affine algebras
with Gelfand-Kirillov dimension zero. More generally, GKdim(A) =
0 iff A is locally finite, meaning that every affine subalgebra is
finite dimensional.
• GKdim(F [x1, . . . , xn]) = n
• GKdim(F 〈x1, . . . , xn〉) =∞ if n ≥ 2
• Set A = F 〈x, y〉/(y)2. Then GKdim(A) = 2

• A =

(
F [x] F [x, y]

0 F [y]

)
. Then GKdim(A) = 2. Note that A is

affine PI, but not noetherian on either side.
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• GKdim(A1) = 2, in fact, GKdim(An) = 2n, where as usual An

denotes the nth Weyl algebra.

We wish to show that a domain of finite Gelfand-Kirillov dimension
is Ore, but first we will need some easy properties of GKdim.

Proposition 7.3 (Properties of GKdim for affine algebras).

(1) If B ⊆ A then GKdim(B) ≤ GKdim(A).
(2) GKdim(A⊕B) = max{GKdim(A),GKdim(B)}.
(3) IfI C A, then GKdim(A/I) ≤ GKdim(A).
(4) If B ⊇ A is such that BA is a finitely generated module, then

GKdim(B) = GKdim(A).
(5) GKdim(Mn(A)) = GKdim(A) for every n.
(6) If ICA and I contains a regular element, then GKdim(A/I) ≤

GKdim(A)− 1.
(7) GKdim(A[x]) = GKdim(A) + 1.
(8) GKdim(A⊗F B) ≤ GKdim(A) + GKdim(B)


