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Context of this talk

STS: Steiner Triple System (with n vertices)

Decomposition of complete n-vertex graph Kn into edge-disjoint triangles

Existence question resolved by Kirkman (1847)

n-vertex STS exists ⇔ n ≡ 1, 3 mod 6

STS and generalizations (Designs) testbed for new proof techniques

e.g., Rödl (1982), Keevash (2014), Glock–Kühn–Lo–Osthus (2016)

This talk: Answer Erdős–Question (1973)

Show existence of approximate STS with arbitrary high ‘girth’

Motivation

High-Dimensional Combinatorics (Design/Hypergraph Theory)

Interest/work of Lefmann–Phelps–Rödl (1993), Ellis–Linial (2013),
Krivelevich–Kwan–Loh–Sudakov (2017)



Erdős–Questions on high-girth STS

Girth (for triple systems)

Smallest g ≥ 4 for which there are g vertices spanning ≥ g − 2 triples

Intuition: large girth ∼= locally sparse

Questions (Erdős, 1973)

(Q1) Are there STS with arbitrary high girth?
(Q2) Are there partial STS with arbitrary high girth and Θ(n2) triples?

Partial STS = edge-disjoint collection of triples (no decomposition)

Why is (Q2) interesting question?

Alteration Method gives partial STS with ≥ c`n
2 triples and girth > `,

with vanishing constant c` → 0 as `→∞ (Lefmann–Phelps–Rödl 1993)

Any partial STS in which no 6 vertices span ≥ 3 triples has o(n2) triples
(implied by (6, 3)-theorem of Ruzsa–Szemerédi 1978)



Main Result: High-girth approx. STS exist

We answer Erdős–Question (Q2) from 1973:

Bohman, W. (2018+): Approximate Steiner Triple Systems with high-girth

For every ` ≥ 4 there are β, n0 > 0, such that, for all n ≥ n0
there are n-vertex partial STS with ≥

(
1− n−β

)
n2

6 triples and girth > `

Nearly best possible: n-vertex partial STS have ≤ 1
3

(n
2

)
∼ n2

6 triples

Algorithmic Proof: analyze natural random greedy process
(typically produces such high-girth partial STS)

Result independently obtained by Glock–Kühn–Lo–Osthus



High-Girth Process

High-Girth Process (` ≥ 4 is fixed)

Sequentially add random triples, chosen uniformly from all triples
whose addition does not violate girth > ` constraint

Terminates with a maximal partial STS
(Girth g > 4 ⇔ all triples are edge-disjoint)

Enough to show that typically runs for ≥
(
1− n−β

)
n2

6 steps

Equivalent description (of High-Girth Process)

Sequentially add random triples, chosen uniformly from all triples that
(i) are edge-disjoint from added triples, and
(ii) do not create ‘forbidden’ subhypergraph with 5 ≤ v ≤ ` vertices

Forbidden subhypergraph: v vertices that span ≥ v − 2 triples

Our analysis shows: constraint (i) has dominant effect



Glimpse of the Proof

High-Girth Process (` ≥ 4 is fixed)

Sequentially add random triples, chosen uniformly from all triples that
(i) are edge-disjoint from added triples, and
(ii) do not create ‘forbidden’ subhypergraph with 5 ≤ v ≤ ` vertices

Hi = collection of triples added during first i steps

Qi = triples that can be added to Hi (without violating constraints)

Main Technical Result (Bohman, W., 2018+)

There is β = β` > 0 such that, whp, for all steps 0 ≤ i ≤ (1− n−β)n
2

6

|Qi | ≈ p3q ·
(
n

3

)
> 0

for suitable functions p = p(t) and q = q(t) that depend on time t := i/n2

p3 ≈ P(triple f does not violate constraint (i) wrt. Hi )

q ≈ P(triple f does not violate constraint (ii) wrt. Hi )



Pseudo-Random Heuristic

Heuristic Ansatz: Hi ≈ random 3-uniform hypergraph

Setting time t := i/n2, for all triples f ∈
(n
3

)
we assume that

P(f ∈ Hi ) ≈ i/

(
n

3

)
≈ 6t/n

holds independently, unless constraint (i) or (ii) violated

Functions p(t) and q(t) can be guessed by Pseudo-Random Heuristic

First example: Ei =
(n
2

)
\
⋃

f ∈Hi
f = all edges ‘untouched’ by Hi

Heuristic implies P(e ∈ Ei ) ≈ 1− 6t =: p

P(f doesn’t violate constraint (i) wrt. Hi ) = P(f ⊆ Ei ) ≈ p3

Second example: Qi = ‘available’ triples (that can be added to Hi )

Heuristic implies P(f ∈ Qi ) ≈ p3 · e−
∑

5≤j≤` cj t
j−3

=: p3 · q.



Glimpse of the proof

Bohman, W. (2018+): Pseudo-Random Heuristic correct

There is β = β` > 0 such that, whp, for all steps 0 ≤ i ≤ (1− n−β)n
2

6

|Qi | ≈ p3q ·
(
n

3

)
> 0

where, using rescaled time t = i/n2,

p = p(t) := 1− 6t and q = q(t) :=
∏

5≤j≤`e
−cj t j−3

Surprising feature

p → 0 and q > 0 as t = i/n2 → 1/6
(heuristically explains why partial STS constraint (i) dominates)

Proof based on Differential-Equation-Method

requires tracking more variables
(‘routes’ to forbidden subhypergraphs)



Summary

Approximate STS with arbitrary high girth

For every fixed ` ≥ 4 and n large enough, there are n-vertex partial Steiner
Triple Systems with (1− o(1))n2/6 triples and girth > `

Remarks

Answers Erdős–Question from 1973

Algorithmic Proof: via natural random greedy process
(iteratively add random triples that keep girth > `)

Questions

Does greedy algorithm terminate with n2/6− n3/2+o(1) triples?

What can we say about growing girth ` = `(n)→∞?


