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MOTIVATING EXAMPLE

Important quantity in random graph theory

@ Xy = number of copies of H in G, p

@ H is a fixed graph (triangle, 4-cycle, r-clique, etc)

Classical result (Janson—tuczak—Rucinski, 1987)
Let &y = minjcpy EX;. If n > no(H), then
P(Xy = 0) = exp(—O(®n))

This talk: lower tail problem (Janson-W., 2014+)

If 20y > co(H) and n > ng(H), then
P(Xy < (1 — e)EXy) = exp(—0O(2dp))




MOTIVATING EXAMPLE

Important quantity in random graph theory

@ Xy = number of copies of H in G,
@ H is a fixed graph (triangle, 4-cycle, r-clique, etc)

This talk: lower tail problem (Janson-W., 2014+)

Let &y = min;cy EX). If 62y > co(H) and n > no(H), then
P(Xy < (1 — €)EXn) = exp(—O(e*p))

Why should we care?

@ Test/develop tools in combinatorial probability (for tail behaviour)

@ Interesting question: concentration of measure + large deviations




TALK-OUTLINE

© State Janson’s Inequality
P(X < (1 - )EX) < exp(—(—£)¥x)

© Matching lower-bound in Poisson case
P(X < (1 —e)EX) > exp(—(1+ o(1))¢(—¢)V¥x)
© Lower-bound reduction to Poisson case (for subgraphs)

P(Xy < (1 - £)EXp) > Q1) - B(X; < (1 - )EX))

© Open problem for triangle counts in G, ,
—log P(Xk, = 0) ~ f(c)n%? for p = cn=1/??



JANSON’S INEQUALITY

Binomial random subsets framework

@ [, = random subset: each / € I' included indep. with probability p

o X = ZAGS IA, where IA = l{AQFp}
@ Parameter § measures how dependent the /4 are (§ = 0 if independent)

@ Special structure: X is sum of increasing indicators
@ X ="Number elements from S which are contained in I',"

Janson’s inequality (Janson, 1989)
Let ¢(x) = (1 + x)log(1l + x) — x and p = EX. Then

P(X < (1 — £)u) < exp(—(—2)u/(1 + 0))

@ Widely used in combinatorial probability/random graph theory
@ Reduces to Chernoff/Bernstein bounds in case of § =0



JANSON’S INEQUALITY

Janson’s inequality (Janson, 1989)
Let ¢(x) = (1 + x)log(1 + x) — x and = EX. Then

P(X < (1—¢e)u) < exp(—¢(—e)u/(1+9))

@ For special case of independent summands (6 = 0) best possible
(as Chernoff bounds are sharp)

Goal of this talk
Prove that Janson's inequality is very often (close to) best possible

@ In the ‘weekly dependent’ case § = o(1) we, e.g., want to show

P(X < (1 —e)u) > exp(—(1+ o(1))p(—¢)p)



MAIN TECHNICAL RESULT

Janson’s inequality sharp if X approx. Poisson (Janson-W., 2014+ )

Let u = EX, m = maxaes Ela and ¢(x) = (1 + x) log(1 + x) — x.
If max{d,7} — 0 and €2y — oo, then

—log P(X < (1 —¢€)u) ~ ¢(—e)u = O(e?p)

Remarks

@ Condition €21 — oo is natural: study exponentially small probabilities

o Condition max{d, 7} — 0 is natural: implies dry(X,Po(r)) — 0
@ Stronger than usual: ¢ is not fixed

@ When 6 = O(1): determine exponent up to constant factors



MAIN TECHNICAL RESULT

Janson’s inequality sharp if X approx. Poisson (Janson-W., 2014+)

Let u = EX, m = maxaes Ela and ¢(x) = (1 + x) log(1 + x) — x.
If max{d, 7} — 0 and £2u — oo, then

—log P(X < (1 —e)u) ~ ¢(—e)p = O(*p)

Proof remarks
@ Our contribution: ‘matching lower bound’
@ Special case € = 1 has simple FKG-based proof (JLR, 1987)
@ We use Hoelder's inequality, Laplace transform, correlation ineq. etc



MAIN TECHNICAL RESULT

Janson’s inequality sharp if X approx. Poisson (Janson-W., 2014+)

Let u = EX, m = maxaes Ela and ¢(x) = (1 + x) log(1 + x) — x.
If max{6, 7} — 0 and £2u — oo, then

—log P(X < (1 —&)u) ~ ¢(—e)pu = O(e%p)

What about § — oo case?

@ For subgraph counts we can always reduce to (weakly) Poisson case
@ There is J C H with §(J) = O(1), so that

P(Xy < (1 - )EX) > Q1) - B(X; < (1 — £)EX))



CASE-STUDY: ‘HOUSE OF SANTA CLAUS’ GRAPH

H = ‘house of santa claus’

So far we know

o(—e)EXy, if p< n~1/?

— ey < (0 el = {@(EZEXH) if p= O(n"1/2).

@ For p> n1/2

o Fact: for n=Y/2 < p < n=2/5 Janson's inequality gives

our discussed methods break: §(H) — oo

P(Xy < (1 — &)EXy) < exp(—ce’EXk,)

5

Tantalizing observation for n=1/2 < p < n=%/

Ky is in weakly Poisson case: d(Ks) = O(1), so
P(Xk, < (1 —¢)EXk,) > exp(—Ce*EX,)




BOOTSTRAPPING LOWER BOUNDS: 0 — 00 CASE

Reduction to § = O(1) case

o Writing D, ="X; < (1 —¢)EX,", we aim at

P(Dy) > P(Dk,) - P(Dy|Dk,) > exp(—0O(e?EXk,))
N—— N————

apply lower bound  hope that (1)
using §(Ks) = O(1)

@ l|dea: "conditioning on Dy, converts rare event Dy into typical one”

Intuition for H= ‘house of santa claus’

@ ‘Too few' Ky-copies typically implies ‘too few' H-copies (*)
) E(XH ’ DK4) < (]. — E)EXH

@ !l We only managed to prove weaker variants of (*) !!!
@ Calculating conditional second moment seems difficult



SUBGRAPH COUNTS 1/2

Lower tail for subgraph counts (Janson-W., 2014+)
Let &y = min;cy EX). If e2®y > co(H) and n > no(H), then
P(Xy < (1 — €)EXp) = exp(—O(c%p))

Bootstrapping approach can always be applied
@ Enough to focus on the subgraph J C H with & = EX]

Rate of decay consistent with normal approximation:
o 20y = O((eEXy)?/ Var Xy)



SUBGRAPH COUNTS 2/2

With more care we can, e.g., also establish the following result

Gaussian behavior for 2-balanced graphs (Janson-W., 2014+)

Assume that H is "2-balanced” (a tree, cycle, clique, hypercube, etc)

If (eEXy)? > Var Xy and € < 1, then
(eEXy)?
_ < _ ~N — 7
log P(Xpy < (1= )EXp) ~ 51— X

excluding only the ranges p = ©(n~Y/™(H) and p = ©(1).




SUMMARY

Informal summary (Janson-W.)

Janson's inequality is often close to best possible

@ Large deviation rate function in Poisson case:
—logP(X < (1 —¢)EX) ~ p(e)EX

@ Subgraphs example (reduction to Poisson case for lower bound):

P(Xy < (1 —e)EXy) = exp (—@(52 DnclgEXJ)>

1/2

Open problem: Triangle counts in G, , for p = cn™

Would be nice to prove — log P(Xx, = 0) ~ f(c)n/?

@ Know asymptotics of — log P(Xk, = 0) for all other ranges of p

@ Maybe (some variant of) the interpolation method works?



