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Motivating Example

Important quantity in random graph theory

XH = number of copies of H in Gn,p

H is a fixed graph (triangle, 4-cycle, r -clique, etc)

Classical result (Janson– Luczak–Ruciński, 1987)

Let ΦH = minJ⊆H EXJ . If n ≥ n0(H), then

P(XH = 0) = exp
(
−Θ(ΦH)

)

This talk: lower tail problem (Janson–W., 2014+)

If ε2ΦH ≥ c0(H) and n ≥ n0(H), then

P(XH ≤ (1 − ε)EXH) = exp
(
−Θ(ε2ΦH)

)
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Important quantity in random graph theory
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H is a fixed graph (triangle, 4-cycle, r -clique, etc)

This talk: lower tail problem (Janson–W., 2014+)

Let ΦH = minJ⊆H EXJ . If ε2ΦH ≥ c0(H) and n ≥ n0(H), then

P(XH ≤ (1 − ε)EXH) = exp
(
−Θ(ε2ΦH)

)

Why should we care?

Test/develop tools in combinatorial probability (for tail behaviour)

Interesting question: concentration of measure + large deviations



Talk-Outline

1 State Janson’s Inequality

P(X ≤ (1 − ε)EX ) ≤ exp
(
−φ(−ε)ΨX

)

2 Matching lower-bound in Poisson case

P(X ≤ (1 − ε)EX ) ≥ exp
(
−(1 + o(1))φ(−ε)ΨX

)

3 Lower-bound reduction to Poisson case (for subgraphs)

P(XH ≤ (1 − ε)EXH) ≥ Ω(1) · P(XJ ≤ (1 − ε)EXJ)

4 Open problem for triangle counts in Gn,p

− logP(XK3 = 0) ∼ f (c)n3/2 for p = cn−1/2?



Janson’s inequality

Binomial random subsets framework

Γp = random subset: each i ∈ Γ included indep. with probability p

X =
∑

A∈S IA, where IA = 1{A⊆Γp}

Parameter δ measures how dependent the IA are (δ = 0 if independent)

Special structure: X is sum of increasing indicators

X = ”Number elements from S which are contained in Γp”

Janson’s inequality (Janson, 1989)

Let φ(x) = (1 + x) log(1 + x) − x and µ = EX . Then

P(X ≤ (1 − ε)µ) ≤ exp
(
−φ(−ε)µ/(1 + δ)

)

Widely used in combinatorial probability/random graph theory

Reduces to Chernoff/Bernstein bounds in case of δ = 0



Janson’s inequality

Janson’s inequality (Janson, 1989)

Let φ(x) = (1 + x) log(1 + x) − x and µ = EX . Then

P(X ≤ (1 − ε)µ) ≤ exp
(
−φ(−ε)µ/(1 + δ)

)

For special case of independent summands (δ = 0) best possible
(as Chernoff bounds are sharp)

Goal of this talk

Prove that Janson’s inequality is very often (close to) best possible

In the ‘weekly dependent’ case δ = o(1) we, e.g., want to show

P(X ≤ (1 − ε)µ) ≥ exp
(
−(1 + o(1))φ(−ε)µ

)



Main technical result

Janson’s inequality sharp if X approx. Poisson (Janson–W., 2014+)

Let µ = EX , π = maxA∈S EIA and φ(x) = (1 + x) log(1 + x) − x .

If max{δ, π} → 0 and ε2µ → ∞, then

− logP(X ≤ (1 − ε)µ) ∼ φ(−ε)µ = Θ(ε2µ)

Remarks

Condition ε2µ → ∞ is natural: study exponentially small probabilities

Condition max{δ, π} → 0 is natural: implies dTV(X ,Po(µ)) → 0

Stronger than usual: ε is not fixed

When δ = O(1): determine exponent up to constant factors



Main technical result

Janson’s inequality sharp if X approx. Poisson (Janson–W., 2014+)

Let µ = EX , π = maxA∈S EIA and φ(x) = (1 + x) log(1 + x) − x .

If max{δ, π} → 0 and ε2µ → ∞, then

− logP(X ≤ (1 − ε)µ) ∼ φ(−ε)µ = Θ(ε2µ)

Proof remarks

Our contribution: ‘matching lower bound’

Special case ε = 1 has simple FKG-based proof (J LR, 1987)

We use Hoelder’s inequality, Laplace transform, correlation ineq. etc



Main technical result

Janson’s inequality sharp if X approx. Poisson (Janson–W., 2014+)

Let µ = EX , π = maxA∈S EIA and φ(x) = (1 + x) log(1 + x) − x .

If max{δ, π} → 0 and ε2µ → ∞, then

− logP(X ≤ (1 − ε)µ) ∼ φ(−ε)µ = Θ(ε2µ)

What about δ → ∞ case?

For subgraph counts we can always reduce to (weakly) Poisson case

There is J ⊆ H with δ(J) = O(1), so that

P(XH ≤ (1 − ε)EXH) ≥ Ω(1) · P(XJ ≤ (1 − ε)EXJ)



Case-study: ‘house of santa claus’ graph

H = ‘house of santa claus’

So far we know

− logP(XH ≤ (1 − ε)EXH) ∼

{

φ(−ε)EXH , if p ≪ n−1/2,

Θ(ε2EXH), if p = O(n−1/2).

For p ≫ n−1/2 our discussed methods break: δ(H) → ∞

Fact: for n−1/2 ≤ p ≤ n−2/5 Janson’s inequality gives

P(XH ≤ (1 − ε)EXH) ≤ exp(−cε2EXK4)

Tantalizing observation for n−1/2 ≤ p ≤ n−2/5

K4 is in weakly Poisson case: δ(K4) = O(1), so

P(XK4 ≤ (1 − ε)EXK4) ≥ exp(−Cε2EXK4)



Bootstrapping lower bounds: δ → ∞ case

Reduction to δ = O(1) case

Writing DJ = ”XJ ≤ (1 − ε)EXJ”, we aim at

P(DH) ≥ P(DK4)
︸ ︷︷ ︸

apply lower bound
using δ(K4) = O(1)

· P(DH | DK4)
︸ ︷︷ ︸

hope that Ω(1)

≥ exp
(
−Θ(ε2EXK4)

)

Idea: ”conditioning on DK4 converts rare event DH into typical one”

Intuition for H= ‘house of santa claus’

‘Too few’ K4-copies typically implies ‘too few’ H-copies (*)

E(XH | DK4) ≤ (1 − ε)EXH

!!! We only managed to prove weaker variants of (*) !!!

Calculating conditional second moment seems difficult



Subgraph Counts 1/2

Lower tail for subgraph counts (Janson–W., 2014+)

Let ΦH = minJ⊆H EXJ . If ε2ΦH ≥ c0(H) and n ≥ n0(H), then

P(XH ≤ (1 − ε)EXH) = exp
(
−Θ(ε2ΦH)

)

Bootstrapping approach can always be applied

Enough to focus on the subgraph J ⊆ H with ΦH = EXJ

Rate of decay consistent with normal approximation:

ε2ΦH = Θ((εEXH)2/VarXH)



Subgraph Counts 2/2

With more care we can, e.g., also establish the following result

Gaussian behavior for 2-balanced graphs (Janson–W., 2014+)

Assume that H is ”2-balanced” (a tree, cycle, clique, hypercube, etc)
If (εEXH)2 ≫ VarXH and ε ≪ 1, then

− logP(XH ≤ (1 − ε)EXH) ∼
(εEXH)2

2 VarXH

,

excluding only the ranges p = Θ(n−1/m2(H)) and p = Θ(1).



Summary

Informal summary (Janson–W.)

Janson’s inequality is often close to best possible

Large deviation rate function in Poisson case:

− logP(X ≤ (1 − ε)EX ) ∼ ϕ(ε)EX

Subgraphs example (reduction to Poisson case for lower bound):

P(XH ≤ (1 − ε)EXH) = exp
(

−Θ(ε2 min
J⊆G

EXJ)
)

Open problem: Triangle counts in Gn,p for p = cn−1/2

Would be nice to prove − logP(XK3 = 0) ∼ f (c)n3/2

Know asymptotics of − logP(XK3 = 0) for all other ranges of p

Maybe (some variant of) the interpolation method works?


