Isomorphisms between dense random graphs

Lutz Warnke
UC San Diego

Joint work with Erlang Surya and Emily Zhu (UC San Diego)
Context

Fundamental Problem
Is an induced copy of F (or a large part of F) contained in G?

- Variant of ‘Subgraph Containment Problem’
- Relevant in Applications: Pattern Recognition, Computer vision, etc
- Many heuristic algorithms (NP-complete)

Today
Random variants of this problem: F and G independent random graphs

- When does induced copy of G_{n,p_1} appear in G_{N,p_2}? How many copies?
- Size of largest common induced subgraph of G_{N,p_1} and G_{N,p_2}?
- Difficult benchmark problem for algorithms
Part I: Why induced containment of G_{n,p_1} in G_{N,p_2}?

Deciding $G_{n,p_1} \sqsubseteq G_{N,p_2}$ is difficult benchmark problem for algorithms

Empirically discovered interesting phase transition diagram:

<table>
<thead>
<tr>
<th>$G(10, x)$</th>
<th>$G(14, x)$</th>
<th>$G(15, x)$</th>
<th>$G(16, x)$</th>
<th>$G(20, x)$</th>
<th>$G(30, x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>\leftrightarrow</td>
<td>\leftrightarrow</td>
<td>\leftrightarrow</td>
<td>\leftrightarrow</td>
<td>\leftrightarrow</td>
<td>\leftrightarrow</td>
</tr>
<tr>
<td>$G(150, y)$</td>
<td>$G(150, y)$</td>
<td>$G(150, y)$</td>
<td>$G(150, y)$</td>
<td>$G(150, y)$</td>
<td>$G(150, y)$</td>
</tr>
</tbody>
</table>

Interest in Combinatorics and Probability

- **Knuth**: asked for mathematical explanation
- **Chatterjee–Diaconis**: explained middle-points $p_1 = p_2 = 1/2$
- **This talk**: we explain all $(p_1, p_2) \in (0, 1)^2$
When induced copy appears: previous work (uniform case)

We write $H \sqsubseteq G$ if G contains an induced copy of H

Chatterjee-Diaconis (2021)

$$\lim_{N \to \infty} \mathbb{P} \left(G_{n,1/2} \sqsubseteq G_{N,1/2} \right) = \begin{cases}
1 & \text{if } n \leq 2 \log_2 N + 1 - \varepsilon_N \\
0 & \text{if } n \geq 2 \log_2 N + 1 + \varepsilon_N
\end{cases}$$

- Proof uses first and second moment method:
 - $X=$ Number of induced copies of $G_{n,1/2}$ in $G_{N,1/2}$
- Does not extend to $G_{n,p_1} \sqsubseteq G_{N,p_2}$ when $p_2 \neq 1/2$:
 - Second moment method fails due to large variance: $\text{Var} X \gg (\mathbb{E}X)^2$
When induced copy appears: new result (general case)

Appearance of induced copy of G_{n,p_1} in G_{N,p_2} (Surya-W.-Zhu, 2023+)

Let $p_1, p_2 \in (0, 1)$ be constants. Define $a := 1/\left(p_2^{p_1}(1 - p_2)^{1-p_1}\right)$. Then

- **Uniform case:** if $p_2 = 1/2$, then $a = 2$ and
 \[
 \lim_{N \to \infty} P\left(G_{n,p_1} \subseteq G_{N,p_2}\right) = \begin{cases}
 1 & \text{if } n \leq 2 \log_a N + 1 - \varepsilon_N, \\
 0 & \text{if } n \geq 2 \log_a N + 1 + \varepsilon_N.
 \end{cases}
 \]

- **Nonuniform case:** if $p_2 \neq 1/2$, then
 \[
 \lim_{N \to \infty} P\left(G_{n,p_1} \subseteq G_{N,p_2}\right) = \begin{cases}
 1 & \text{if } n - (2 \log_a N + 1) \to -\infty, \\
 f(c) & \text{if } n - (2 \log_a N + 1) \to c, \\
 0 & \text{if } n - (2 \log_a N + 1) \to \infty,
 \end{cases}
 \]
 where $f(c) := P(N(0, \sigma^2) \geq c)$ with $\sigma = \sigma(p_1, p_2)$

- Sharpness of phase transition differs for $p_2 = 1/2$ and $p_2 \neq 1/2$
When induced copy appears: new result (remarks)

Remarks

- Confirms simulation based predictions:

 \[G(10, x) \leftrightarrow G(150, y) \]
 \[G(14, x) \leftrightarrow G(150, y) \]
 \[G(15, x) \leftrightarrow G(150, y) \]
 \[G(16, x) \leftrightarrow G(150, y) \]
 \[G(20, x) \leftrightarrow G(150, y) \]
 \[G(30, x) \leftrightarrow G(150, y) \]

- Answers question of Chatterjee-Diaconis

- Difference to size of largest clique in \(G_{N,p_2} \)
 (differs by additive \(\Theta(\log \log N) \) due to size of automorphism group)

- Deviation in edge-count \(e(G_{n,p_1}) \) causes large variance when \(p_2 \neq 1/2 \)
 (responsible for different ‘sharpness’ when \(p_2 = 1/2 \) and \(p_2 \neq 1/2 \))
When induced copy appears: new result (remarks)

Confirms simulation based predictions

- Estimate of $\mathbb{P}(G_{n,x} \subseteq G_{150,y})$ for $n = 10, 14, 15, 16, 20, 30$
Proof overview $p_2 \neq 1/2$: number of edges of G_{n,p_1} matters

For pseudorandom property \mathcal{P} (controls automorphisms of subgraphs etc):

$$\mathbb{P}(G_{n,p_1} \subseteq G_{N,p_2}) \approx \sum_{H \in \mathcal{P}} \mathbb{P}(G_{n,p_1} = H)\mathbb{P}(H \subseteq G_{N,p_2})$$

If $n = 2 \log_a N + 1 + c$ and H has $e(H) = p_1 \binom{n}{2} + \delta n$ edges, then

$$\mathbb{E}X_H = (N)_n \cdot p_2^{e(H)}(1 - p_2)^{\binom{n}{2} - e(H)} \approx \left[\left(\frac{p_2}{1 - p_2} \right)^{\delta} a^{-c} \right]^n$$

so edge-deviation δn determines whether $\mathbb{E}X_H \to \infty$, which via second moment method (work!) implies $\mathbb{P}(H \sqsubseteq G_{N,p_2}) \to 1$. CLT then gives

$$\mathbb{P}(G_{n,p_1} \subseteq G_{N,p_2}) \approx \sum_{H \in \mathcal{P}} \mathbb{P}(G_{n,p_1} = H)1_{\{e(H) \geq p_1 \binom{n}{2} + \delta_c n\}}$$

$$\approx \mathbb{P}(e(G_{n,p_1}) \geq p_1 \binom{n}{2} + \delta_c n) \approx f(c)$$
How many copies: Asymptotic distribution

\[X = \text{Number of induced copies of } G_{n,p_1} \text{ in } G_{N,p_2} \]

Uniform case: Asymptotically Poisson

If \(p_2 = \frac{1}{2} \) and \(n \geq 2 \log_a N - 1 + \varepsilon_N \), then \(d_{TV}(X, \text{Po}(\mu)) \to 0 \).

By Stein-Chen method and pseudorandomness

Nonuniform case: ‘squashed’ log-normal

If \(p_2 \neq \frac{1}{2} \) and \(n - (2 \log_a N - 1) \to c \), then

\[
\frac{\log(1 + X)}{\log N} \overset{d}{\to} \text{SN}(-c, \sigma^2)
\]

for a ‘squashed’ normal distribution \(\text{SN}(\mu, \sigma^2) \) with \(\sigma = \sigma(p_1, p_2) \), i.e., with cumulative distribution function \(F(x) := \mathbb{1}_{\{x \geq 0\}} \mathbb{P}(N(\mu, \sigma^2) \leq x) \).

By second moment method and conditioning on number of edges \(e(G_{n,p_1}) \)
Proof ingredient: Pseudorandom Properties

In Second Moment Calculation we restrict to pseudorandom H:

- Every large induced subgraph of H has trivial automorphism group
- Edges in every large subgraph of H are ‘super-concentrated’

Difference between $G_{n,m}$ and $G_{n,p}$ matters

Edges of uniform $G_{n,m}$ are 'more concentrated' than of binomial $G_{n,p}$

Example: for all vertex-subsets $S \subseteq [n]$, writing $p = m/(\binom{n}{2})$ we have

$$\left| e(G_{n,m}[S]) - \left(\binom{|S|}{2}\right)p \right| \leq n^{2/3}(n - |S|),$$

while for sets S of size $|S| = n - o(n^{1/3})$ we expect that

$$\left| e(G_{n,p}[S]) - \left(\binom{|S|}{2}\right)p \right| \geq \Omega\left(|S|\sqrt{p(1-p)}\right) = \Theta(n) \gg n^{2/3}(n - |S|)$$
Part II: Another induced containment variant

So far: when does induced copy of G_{n,p_1} appear in G_{N,p_2}?

Now: largest part of G_{N,p_1} that appears as induced copy of G_{N,p_2}

Size of largest (#vertex) common induced subgraph of G_{N,p_1} and G_{N,p_2}?

- Considered by Chatterjee–Diaconis in uniform case $p_1 = p_2 = 1/2$: motivated by fact that two infinite Rado graphs $G_{\infty,1/2}$ are isomorphic
- Natural question (should have been asked 30+ years ago!)
Two point concentration: largest common induced subgr.

\(I_N \) = size of largest common induced subgraph of \(G_{N,p_1} \) and \(G_{N,p_2} \)

Chatterjee-Diaconis (2021): uniform case

For \(p_1 = p_2 = 1/2 \), \(I_N \) is concentrated on two values around

\[4 \log_2 N - 2 \log_2 \log_2 N - 2 \log_2 (4/e) + 1 \]

Surya-Warnke-Zhu (2023+): general case

For constants \(p_1, p_2 \in (0,1) \), \(I_N \) is concentrated on two values around

\[\max_{p \in [0,1]} \min \left\{ x_N^{(0)}(p), x_N^{(1)}(p), x_N^{(2)}(p) \right\}, \]

where for some \(b_0, b_1, b_2 \) depending on \(p_1, p_2 \) we have

\[x_N^{(0)}(p) = 4 \log_{b_0} N - 2 \log_{b_0} \log_{b_0} N - 2 \log_{b_0} (4/e) + 1, \]
\[x_N^{(i)}(p) := 2 \log_{b_i} N - 2 \log_{b_i} \log_{b_i} N - 2 \log_{b_i} (2/e) + 1. \]
Failure of (naive) first moment prediction

\[X_n = \# \text{ of pairs of common induced } n\text{-vertex subgraphs of } G_{N,p_1} \text{ and } G_{N,p_2} \]

First moment prediction (heuristic) for ‘correct’ vertex-size \(n \)

- \(\mathbb{E}X_n \ll 1 \) implies \(P(X_n = 0) \rightarrow 1 \)
- \(\mathbb{E}X_n \gg 1 \) implies \(P(X_n \geq 1) \rightarrow 1 \)

- Chatterjee and Diaconis confirmed prediction when \(p_1 = p_2 = 1/2 \)
- We proved that prediction is only true in the following \((p_1, p_2)\) region:

Outside that region second moment method fails due to large variance
Form of answer: why optimize over three different terms?

Graph H fails to appear in G_{N,p_1} and G_{N,p_2}:

1. expected number of pairs of copies of H in G_{N,p_1} and G_{N,p_2} is $o(1)$
2. expected number of copies of H in G_{N,p_1} is $o(1)$
3. expected number of copies of H in G_{N,p_2} is $o(1)$

(a) case 1
(b) cases 1,2
(c) cases 1,3

Figure: The corresponding conditions determine the ‘optimal’ size n of H
Two point concentration: largest common induced subgr.

\[I_N = \text{size of largest common induced subgraph of } G_{N,p_1} \text{ and } G_{N,p_2} \]

Surya-Warnke-Zhu (2023+): general case

For constant \(p_1, p_2 \in (0, 1) \), \(I_N \) is concentrated on two values around

\[
\max_{p \in [0,1]} \min \left\{ x_N^{(0)}(p), x_N^{(1)}(p), x_N^{(2)}(p) \right\},
\]

where for some \(b_0, b_1, b_2 \) depending on \(p_1, p_2 \) we have

\[
x_N^{(0)}(p) = 4 \log_{b_0} N - 2 \log_{b_0} \log_{b_0} N - 2 \log_{b_0} (4/e) + 1,
\]
\[
x_N^{(i)}(p) = 2 \log_{b_i} N - 2 \log_{b_i} \log_{b_i} N - 2 \log_{b_i} (2/e) + 1.
\]

- The optimization over \(p \) takes all possible edge-densities into account.
- Surprising: form of answer changes for constant edge-probability
- Proof uses (fairly technical) first and second moment method
Summary

Questions we answered

- When does induced copy of G_{n,p_1} appear in G_{N,p_2}? How many copies?
- Size of largest common induced subgraph of G_{N,p_1} and G_{N,p_2}?

- Each time vanilla second moment failed due to large variance
- Unusual distribution: squashed lognormal
- Surprising: form of answer changes for constant edge-probabilities

Open Problem

Size of the largest common induced subgraph of G_{N_1,p_1} and G_{N_2,p_2}?

- Complete understanding would unify our results