Two-Point Concentration of the Domination Number of Random Graphs

Lutz Warnke
UC San Diego

Joint work with Tom Bohman (CMU) and Emily Zhu (UCSD)

Topic: Two-Point Concentration

Fundamental Problem

Given a graph-parameter X, which probabilities $p=p(n)$ have the property that $X\left(G_{n, p}\right)$ is concentrated on two values in the random graph $G_{n, p}$?

- $\mathbb{P}\left(X\left(G_{n, p}\right) \in\{r, r+1\}\right) \rightarrow 1$ for some deterministic $r=r(n, p)$
- Examples: Chromatic Number, Clique + Independence Number

Today

Two-point concentration of Domination Number $\gamma\left(G_{n, p}\right)$

- $\gamma\left(G_{n, p}\right)=$ size of smallest vertex set K such that in $G_{n, p}$ every vertex $v \notin K$ has at least one neighbor in K
- Fundamental parameter (third example in "Probabilistic Method")
- Two-point concentration studied since 1981

History: Domination Number

Two-Point Concentration of $\gamma\left(G_{n, p}\right)$

$$
\begin{array}{lll}
p=1 / 2 & \text { Weber } & 1981 \\
p \gg \sqrt{\frac{\log \log n}{\log n}} & \text { Godbole-Wieland } & 2001 \\
p \geq n^{-1 / 2}(\log n)^{2} & \text { Glebov-Liebenau-Szabó } & 2015
\end{array}
$$

- Range of $p=p(n)$ was believed to be essentially best possible

Conjecture (Glebov-Liebenau-Szabó)
Two-point concentration of $\gamma\left(G_{n, p}\right)$ fails for $p \ll n^{-1 / 2}$

History: Domination Number

Two-Point Concentration of $\gamma\left(G_{n, p}\right)$

$$
\begin{array}{lll}
p=1 / 2 & \text { Weber } & 1981 \\
p \gg \sqrt{\frac{\log \log n}{\log n}} & \text { Godbole-Wieland } & 2001 \\
p \geq n^{-1 / 2}(\log n)^{2} & \text { Glebov-Liebenau-Szabó } & 2015
\end{array}
$$

- Range of $p=p(n)$ was believed to be essentially best possible

Conjecture (Glebov-Liebenau-Szabó)

Two-point concentration of $\gamma\left(G_{n, p}\right)$ fails for $p \ll n^{-1 / 2}$

This talk

We disprove the conjecture (it fails around $p=n^{-2 / 3}$)

Main Results: Domination Number

$$
\begin{aligned}
& \text { Two-Point Concentration for } p \geq n^{-2 / 3+\varepsilon} \text { (Bohman-Warnke-Zhu) } \\
& \text { If } p \geq n^{-2 / 3}(\log n)^{3} \text {, then there is } r=r(n, p) \text { such that } \\
& \mathbb{P}\left(\gamma\left(G_{n, p}\right) \in\{r, r+1\}\right) \rightarrow 1 \text { as } n \rightarrow \infty
\end{aligned}
$$

- Disproves conjecture of Glebov-Liebenau-Szabó
- Proof: first + second moment method
- Major new technical obstacle arises for $p \leq n^{-1 / 2}$:
\longrightarrow we overcome by adapting Janson's Inequality

Main Results: Domination Number

Two-Point Concentration for $p \geq n^{-2 / 3+\varepsilon}$ (Bohman-Warnke-Zhu)
If $p \geq n^{-2 / 3}(\log n)^{3}$, then there is $r=r(n, p)$ such that $\mathbb{P}\left(\gamma\left(G_{n, p}\right) \in\{r, r+1\}\right) \rightarrow 1$ as $n \rightarrow \infty$

- Disproves conjecture of Glebov-Liebenau-Szabó
- Proof: first + second moment method
- Major new technical obstacle arises for $p \leq n^{-1 / 2}$: \longrightarrow we overcome by adapting Janson's Inequality

No Two-Point Concentration for $p \leq n^{-2 / 3}$ (Bohman-Warnke-Zhu)
If $p \leq n^{-2 / 3}(\log n)^{2 / 3}$, then there is $q \in[p, 2 p]$ such that $\max _{r \geq 0} \mathbb{P}\left(\gamma\left(G_{n, q}\right) \in\{r, r+1\}\right) \leq 3 / 4$ for infinitely many n

- Proof: coupling + discrete derivative argument

Glimpse of Proof 1/3: Second Moment Method

- Setup (to show existence of dominating sets)
- $X=$ \# dominating sets in $G_{n, p}$ of size r
- Show $\mathbb{E} X \rightarrow \infty$ and $\operatorname{Var} X \ll(\mathbb{E} X)^{2}$ for suitable r
- Variance calculation
- For most sets A, B we essentially need to show

$$
\mathbb{P}(A, B \text { both dominate }) \leq(1+o(1)) \mathbb{P}(A \text { dominates }) \mathbb{P}(B \text { dominates })
$$

- Ignoring some details, this reduces to

$$
\mathbb{P}(A, B \text { dom. each other }) \leq(1+o(1)) \mathbb{P}(A \text { dom. } B) \mathbb{P}(B \text { dom. } A)
$$

- Requires Poisson-Approximation when A and B are disjoint:

$$
\mathbb{P}(X=0) \leq(1+o(1)) \exp (-\mathbb{E} X)
$$

where $X=\#$ of isolated vertices in random bipartite graph $G_{n, p}[A, B]$

Glimpse of Proof 2/3: Poisson Approximation

- Goal: Poisson-Approximation
- For $X=\#$ of isolated vertices in random bipartite graph $G_{n, p}[A, B]$, want

$$
\mathbb{P}(X=0) \leq(1+o(1)) \exp (-\mathbb{E} X)
$$

- Major Difficulty: many mild dependencies (every $v \in A$ with all $w \in B$)
- Remarks
- This holds 'for free' when $p \gg n^{-1 / 2}(\log n)$, as then $\mathbb{E} X \rightarrow 0$
- Standard tools fail for $p \ll n^{-1 / 2}$ (where $\mathbb{E} X=n^{1 / 3+o(1)}$ possible)
\star Method of moments, Stein-Chen method and inclusion-exclusion: work when $\mathbb{E} X$ to not too large
* Janson's inequality: dependency parameter Δ too large
- Our Approach
- We adapt the general proof of Janson's inequality to the specific situation

Glimpse of Proof 3/3: Adapting Janson's Inequality

- Goal: Poisson-Approximation
- For $X=\#$ of isolated vertices in random bipartite graph $G_{n, p}[A, B]$, want

$$
\mathbb{P}(X=0) \leq(1+o(1)) \exp (-\mathbb{E} X)
$$

- Major Difficulty: many mild dependencies (every $v \in A$ with all $w \in B$)
- Our Approach: adapt the proof of Janson's inequality
- Taking the mild dependencies into account, we can improve

$$
\mathbb{P}(X=0) \leq \exp (-\mathbb{E} X+\Delta / 2)
$$

to the better bound

$$
\mathbb{P}(X=0) \leq \exp (-\mathbb{E} X+\Delta p \cdot \log (1+\cdots))
$$

- Natural improvement: since $\operatorname{Var} X \leq \mathbb{E} X+\Delta \cdot p /(1-p)$
- Essentially best possible: $\Delta p \cdot \log (1+\cdots)=o(1)$ for $p \geq n^{-2 / 3}(\log n)^{5 / 2}$

Summary

Two-point concentration of Domination Number $\gamma\left(G_{n, p}\right)$

- True for $p \gg n^{-2 / 3}(\log n)^{3}$
- Fails for $p \ll n^{-2 / 3}(\log n)^{2 / 3}$
- Disproved conjecture of Glebov-Liebenau-Szabó
- Main Proof Ingredient: adapting Janson's inequality to situation

Open Problem

- Prove better anti-concentration results for $p \leq n^{-2 / 3}$
- One approach would be to bound $\left.\max _{k} \mathbb{P}\left(\gamma\left(G_{n, p}\right)\right)=k\right)$

