Two-Point Concentration of the Domination Number of Random Graphs

Lutz Warnke

UC San Diego

Joint work with Tom Bohman (CMU) and Emily Zhu (UCSD)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Topic: Two-Point Concentration

Fundamental Problem

Given a graph-parameter X, which probabilities p = p(n) have the property that $X(G_{n,p})$ is concentrated on two values in the random graph $G_{n,p}$?

- $\mathbb{P}(X(G_{n,p}) \in \{r, r+1\}) \rightarrow 1$ for some deterministic r = r(n, p)
- Examples: Chromatic Number, Clique + Independence Number

Today

Two-point concentration of *Domination Number* $\gamma(G_{n,p})$

- $\gamma(G_{n,p})$ = size of smallest vertex set K such that in $G_{n,p}$ every vertex $v \notin K$ has at least one neighbor in K
- Fundamental parameter (third example in "Probabilistic Method")
- Two-point concentration studied since 1981

History: Domination Number

• Range of p = p(n) was believed to be essentially best possible

Conjecture (Glebov-Liebenau-Szabó)

Two-point concentration of $\gamma(G_{n,p})$ fails for $p \ll n^{-1/2}$

History: Domination Number

• Range of p = p(n) was believed to be essentially best possible

Conjecture (Glebov-Liebenau-Szabó)

Two-point concentration of $\gamma(G_{n,p})$ fails for $p \ll n^{-1/2}$

This talk

We disprove the conjecture (it fails around $p = n^{-2/3}$)

Main Results: Domination Number

Two-Point Concentration for $p \ge n^{-2/3+\varepsilon}$ (Bohman-Warnke-Zhu) If $p \ge n^{-2/3}(\log n)^3$, then there is r = r(n, p) such that $\mathbb{P}(\gamma(G_{n,p}) \in \{r, r+1\}) \to 1$ as $n \to \infty$

(日) (日) (日) (日) (日) (日) (日) (日)

- Disproves conjecture of Glebov-Liebenau-Szabó
- Proof: first + second moment method
- Major new technical obstacle arises for $p \le n^{-1/2}$:
 - \longrightarrow we overcome by adapting Janson's Inequality

Main Results: Domination Number

Two-Point Concentration for $p \ge n^{-2/3+\varepsilon}$ (Bohman-Warnke-Zhu) If $p \ge n^{-2/3}(\log n)^3$, then there is r = r(n, p) such that $\mathbb{P}(\gamma(G_{n,p}) \in \{r, r+1\}) \to 1$ as $n \to \infty$

- Disproves conjecture of Glebov-Liebenau-Szabó
- Proof: first + second moment method
- Major new technical obstacle arises for p ≤ n^{-1/2}:
 → we overcome by adapting Janson's Inequality

No Two-Point Concentration for $p \le n^{-2/3}$ (Bohman-Warnke-Zhu) If $p \le n^{-2/3} (\log n)^{2/3}$, then there is $q \in [p, 2p]$ such that $\max_{r\ge 0} \mathbb{P}(\gamma(G_{n,q}) \in \{r, r+1\}) \le 3/4$ for infinitely many n

• Proof: coupling + discrete derivative argument

Glimpse of Proof 1/3: Second Moment Method

- Setup (to show existence of dominating sets)
 - X = # dominating sets in $G_{n,p}$ of size r
 - Show $\mathbb{E}X \to \infty$ and Var $X \ll (\mathbb{E}X)^2$ for suitable r
- Variance calculation
 - ▶ For most sets *A*, *B* we essentially need to show

 $\mathbb{P}(A, B \text{ both dominate}) \leq (1 + o(1))\mathbb{P}(A \text{ dominates})\mathbb{P}(B \text{ dominates})$

Ignoring some details, this reduces to

 $\mathbb{P}(A, B \text{ dom. each other}) \leq (1 + o(1))\mathbb{P}(A \text{ dom. } B)\mathbb{P}(B \text{ dom. } A)$

• Requires **Poisson-Approximation** when A and B are disjoint:

 $\mathbb{P}(X=0) \leq (1+o(1))\exp(-\mathbb{E}X)$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

where X = # of isolated vertices in random bipartite graph $G_{n,p}[A, B]$

Glimpse of Proof 2/3: Poisson Approximation

- Goal: Poisson-Approximation
 - For X = # of isolated vertices in random bipartite graph $G_{n,p}[A, B]$, want

 $\mathbb{P}(X=0) \leq (1+o(1))\exp(-\mathbb{E}X)$

• Major Difficulty: many mild dependencies (every $v \in A$ with all $w \in B$)

Remarks

- This holds 'for free' when $p \gg n^{-1/2}(\log n)$, as then $\mathbb{E}X \to 0$
- Standard tools fail for $p \ll n^{-1/2}$ (where $\mathbb{E}X = n^{1/3+o(1)}$ possible)
 - ★ Method of moments, Stein-Chen method and inclusion-exclusion: work when EX to not too large

• Our Approach

▶ We adapt the general proof of Janson's inequality to the specific situation

Glimpse of Proof 3/3: Adapting Janson's Inequality

• Goal: Poisson-Approximation

For X = # of isolated vertices in random bipartite graph $G_{n,p}[A, B]$, want

$$\mathbb{P}(X=0) \leq (1+o(1)) \exp(-\mathbb{E}X)$$

- ▶ Major Difficulty: many mild dependencies (every $v \in A$ with all $w \in B$)
- Our Approach: adapt the proof of Janson's inequality
 - Taking the mild dependencies into account, we can improve

$$\mathbb{P}(X=0) \leq \exp(-\mathbb{E}X + \Delta/2)$$

to the better bound

$$\mathbb{P}(X = 0) \leq \exp(-\mathbb{E}X + \Delta p \cdot \log(1 + \cdots))$$

- ▶ Natural improvement: since $Var X \leq \mathbb{E}X + \Delta \cdot p/(1-p)$
- Essentially best possible: $\Delta p \cdot \log(1 + \cdots) = o(1)$ for $p \ge n^{-2/3} (\log n)^{5/2}$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Summary

Two-point concentration of Domination Number $\gamma(G_{n,p})$

- True for $p \gg n^{-2/3} (\log n)^3$
- Fails for $p \ll n^{-2/3} (\log n)^{2/3}$
- Disproved conjecture of Glebov-Liebenau-Szabó
- Main Proof Ingredient: adapting Janson's inequality to situation

Open Problem

- Prove better anti-concentration results for $p \le n^{-2/3}$
- One approach would be to bound $\max_k \mathbb{P}(\gamma(G_{n,p})) = k)$