Concentration of the chromatic number of sparse random graphs

Lutz Warnke
UC San Diego

Joint work with Erlang Surya
(who created most of these slides)
Context and Main Question

- **Random graph** $G_{n,p}$: n-vertex graph where each of $\binom{n}{2}$ possible edges included independently with probability p

- **Chromatic number** $\chi(G)$: minimum number of colors needed to color vertices of G s.t. no two adjacent vertices have same color

Main Question
Suppose there is an interval of length $\ell(n, p)$ that contains chromatic number $\chi(G_{n,p})$ with high probability. How small can $\ell(n, p)$ be?
Past Results: constant p

Bollobas 1988

For constant edge-probability $p \in (0, 1)$, whp

$$\chi(G_{n,p}) = (1 + o(1)) \frac{n}{2 \log_{1/(1-p)} n}. $$

So $\ell(n, p) = o(n/\log_b n)$.

- **Lower bound**: Show largest ISET is of size $(2 + o(1)) \log_{1/(1-p)} n$.
- **Upper bound**: Repeatedly pull out ISET of size $2 \log_{1/(1-p)} n$ until $O(\sqrt{n}/\log n)$ vertices are left (via Janson’s inequality).
Past Results: all \(p \)

Shamir and Spencer 1987

- \(\ell(n, p) \leq \omega \sqrt{n} \) for any \(p(n) \),
- \(\ell(n, p) \leq \omega \sqrt{np \log n} \) for \(p = n^{-\alpha} \), \(\alpha \in (0, 1/2) \)

Basic-Idea: Via Martingale argument to show that whp there exists \(\Lambda \geq 0, Z \subseteq V, |Z| \leq \omega \sqrt{n} \)

\[
\Lambda \leq \chi(G_{n,p}) \leq \Lambda + \chi(G_{n,p}[Z])
\]

For \(p = n^{-\alpha} \), easy to remove extra \(\log n \) term with modern argument

Key-Task: argue that \(G_{n,p}[Z] \) is sparse
Past Results

log improvement by Alon (and later independently by Scott)
For \(p \in [0, 1] \) constant, \(\ell(n, p) \leq \omega \sqrt{n} / \log n \)

- **Idea**: Repeatedly remove ISET of size \(\Theta(\log n) \) from \(G_{n,p}[Z] \)
- If we use Janson’s inequality to pull out the ISET, this only works until \(p = n^{-\alpha} \) for some small \(\alpha > 0 \)

Alon and Krivelevich
Let \(\epsilon > 0 \). If \(p \leq n^{-1/2-\epsilon} \), then \(\ell(n, p) \leq 2 \)
New result: Sparse case $p = o(1)$

Let $\epsilon > 0$. If $p \geq n^{-1/2+\epsilon}$, then

$$\ell(n, p) \leq \frac{\omega \sqrt{np}}{\log n}$$

- Use *density argument* instead of large deviation inequalities.
More detailed statement: Sparse case $p = o(1)$

Surya and Warnke (2022+)

- If $\omega \sqrt{np} \gg \log n$, then
 \[\ell(n, p) = O \left(\frac{\omega \sqrt{np}}{\log(\omega \sqrt{np}/\log n)} \right) \]

- If $\omega \sqrt{np} \ll \log n$, then
 \[\ell(n, p) = O \left(\frac{\log n}{\log(\log n/(\omega \sqrt{np}))} \right) \]

- If $p = n^{-\alpha}$, $\alpha \in (0, 1/2)$ we have $\ell(n, p) = O \left(\frac{\omega \sqrt{np}}{\log n} \right)$, extending log improvement of Alon.

- Match the best known upper bound up to some constant factor when p constant and $p \leq n^{-1/2-\epsilon}$
Key Ingredient: Greedy Algorithm

Will focus on controlling $\chi(G_{n,p}[Z])$.

We use greedy algorithm in two ways, exploiting small degree vertices:

- Pull out largest independent sets until $O\left(\frac{\log n}{p}\right)$ vertices are left, which will have typical size $\simeq O\left(\log(\omega \sqrt{np}/\log n)/p\right)$.
 - **Refined analysis**: as fewer vertices remain, the independent sets get smaller (exploit that few vertices remain).
- Pick the minimum degree vertex among the remaining vertices, which will have degree $O(\log n)$.

Chernoff bound + Union bound: small degree conditions holds whp
Greedy Lemmas

To iteratively pull out largest independent set (until few vertices remain):

Large independent sets: greedy bound

Given graph G and $0 < d < 1 < u$ with $\delta(G[S]) \leq d(|S| - 1)$ for all $S \subseteq V(G)$ of size $|S| \geq u$. Then

$$\alpha(G[W]) \geq -\log(1-d)(1-1/u)\left(|W|/u\right)$$

for any $W \subseteq V(G)$ of size $|W| \geq u$.

To color the remaining $O(\log n/p)$ vertices:

Chromatic number: greedy bound

Given a graph G with $\delta(G[S]) \leq r$ for all $S \subseteq V(G)$. Then

$$\chi(G) \leq r + 1$$
Large independent sets: greedy bound

Given graph G and $0 < d < 1 < u$ with $\delta(G[S]) \leq d(|S| - 1)$ for all $S \subseteq V(G)$ of size $|S| \geq u$. Then $\alpha(G[W]) \geq -\log(1-d)(1-1/u)(|W|/u)$ for any $W \subseteq V(G)$ of size $|W| \geq u$.

Construct independent set greedily: set $W_0 = W$ and, for $i \geq 1$, pick $w_i \in W_{i-1}$ with minimal degree in $G[W_{i-1}]$ and set

$$W_i = \{ v \in W_{i-1} : v \text{ not adjacent to } w_i \}.$$

If $|W_{i-1}| \geq u$ holds, then $\deg_{G[W_i]}(w_i) \leq d(|W_i| - 1)$, implying that

$$|W_i| \geq (1-d)(|W_{i-1}| - 1) \geq (1-d)(1-1/u)|W_{i-1}|.$$
Large independent sets: greedy bound

Given graph G and $0 < d < 1 < u$ with $\delta(G[S]) \leq d(|S| - 1)$ for all $S \subseteq V(G)$ of size $|S| \geq u$. Then $\alpha(G[W]) \geq -\log(1-d)(1-1/u)(|W|/u)$ for any $W \subseteq V(G)$ of size $|W| \geq u$.

Construct independent set greedily: set $W_0 = W$ and, for $i \geq 1$, pick $w_i \in W_{i-1}$ with minimal degree in $G[W_{i-1}]$ and set

$$W_i = \{ v \in W_{i-1} : v \text{ not adjacent to } w_i \}.$$

If $|W_{i-1}| \geq u$ holds, then $\deg_{G[W_i]}(w_i) \leq d(|W_i| - 1)$, implying that

$$|W_i| \geq (1 - d)(|W_{i-1}| - 1) \geq (1 - d)(1 - 1/u)|W_{i-1}|.$$

So W_i is non-empty for

$$i - 1 \leq -\log(1-d)(1-1/u)(|W|/u) =: I(|W|),$$

so we terminate with an independent set $\{w_1, \ldots, w_j\} \subseteq W$ of size $j \geq \lceil I(|W|) + 1 \rceil \geq I(|W|)$.
Very dense case 1 – \(p = n^{-\Omega(1)} \)

- **Heuristic**: Optimal colouring is obtained by taking as many disjoint \(\alpha \)-ISETs as possible, then covering the rest with \((\alpha - 1)\)-ISETs.

- **Main source of fluctuation**: number of \(\alpha \)-ISETs.

Conjecture

\((\log n)^{1/(r)} n^{-2/r} \ll 1 - p \ll n^{-2/(r+1)} \) for some integer \(r \geq 1 \). Let \(\mu_{r+1} = \mu_{r+1}(n, p) := \binom{n}{r+1} (1 - p)^{r+1} \) be the expected number of \(r + 1 \)-ISET. Then

\[
\ell(n, p) = \omega \sqrt{\mu_{r+1}}
\]
Very dense case $1 - p = n^{-\Omega(1)}$ conjecture

Figure: Conjecture predicts if $n^2(1 - p) = n^{x + o(1)}$, then $\ell(n, p) = n^{y + o(1)}$
Concentration result: $1 - p = O(1/n)$

- **Number of ISET of size ≥ 3 is negligible:**
 Problem reduces to studying maximum matching on complement

- **Main source of fluctuation in maximum matching on $G_{n,q}$:**
 Fluctuation of isolated edges.

Theorem Surya and Warnke (2022+)

$$Cn\sqrt{q} \leq \ell(n, p) \leq \omega n\sqrt{q}$$

- **Lower bound:** from fluctuation of isolated edges in complement $G_{n,q}$
- **Upper bound:** from Talagrand’s inequality