We shall show that the relation between the roots puts very strong limit on the root system Δ.
This is achieved by studying, 'the α-string containing β '

$$
\fallingdotseq\{\beta+n \alpha \mid n \in \mathbb{Z}\}
$$

Theorem 4.8. $\int \begin{aligned} & \text { Integers } \\ & \text { Let } \Delta \text { be the set of roots. Then }\end{aligned}=\frac{2 B\left(H_{\beta}, H_{\alpha}\right)}{B\left(H_{\alpha}, H_{\alpha}\right)}$
(a) $\exists p, 9 \geqslant 0$ such that the, α string containing β

Consists of consecutive roots, ie $-p \leqslant n \leqslant 9$

(6) If $\beta=c \alpha$ with $\alpha, \beta \in \Delta$ and $c \in \mathbb{C}$, then $c=0$ integers or $c= \pm 1$?
(c) If $\alpha, \beta, \alpha+\beta \in \Delta$, then $\left[X_{\alpha}, X_{\beta}\right] \neq 0 \quad \forall X_{\alpha} \in g_{\alpha}, X_{\beta} \in X_{\beta}$.
$n_{\alpha, \beta}:=\frac{2 B(\beta, \alpha)}{B(\alpha, \alpha)}$ is called a Carton integer.
Pf: Same argnement as before
Consider the end points
Namely $\quad \beta+n \alpha \quad-p \leqslant n \leqslant 1 \quad(p, 9 \geqslant 0)$
is the longest consecutive string containing β.
Consider

$$
V:=\sum_{-p \leqslant n \leqslant \underline{q}} q_{\beta+n \alpha}
$$

$a_{H_{\alpha}}$ preserves V. so do ad X_{α} \& ad $X_{-\alpha}$

$$
\Rightarrow \operatorname{tr}\left(a d_{H_{\alpha}}\right)=0 \Rightarrow \sum_{n} \pi\left(\operatorname{ad}_{H_{\alpha}}\left(g_{\beta+n \alpha}\right)\right)=0
$$

$$
\begin{aligned}
& \Rightarrow \quad 0=\sum_{n}(\beta+n \alpha)\left(H_{\alpha}\right)=(\underline{q}+p+1) B(\alpha, \beta)+\sum_{-p \leq n \leq \underline{q}} B(\alpha, \alpha) n \\
& 0=B(\alpha, \beta)+\frac{q-p}{2} B(\alpha, \alpha) \\
& \Rightarrow \quad \frac{2 B(\alpha, \beta)}{B(\alpha, \alpha)}=\underline{q}-p .
\end{aligned}
$$

(b) Apply the above to α string containing β
\& β string containing α.

$$
\begin{array}{lll}
\frac{2 B(\alpha, c \alpha)}{B(\alpha, \alpha)} \in \mathbb{Z} & \& \quad \frac{2 B\left(\frac{1}{c} \beta, \beta\right)}{B(\beta, \beta)} \in \mathbb{Z} \\
\Rightarrow 2 c \in \mathbb{Z} & \& & \frac{2}{c} \in \mathbb{Z}
\end{array}
$$

From this we have $c=0 \quad c= \pm 1, \quad c= \pm 2 \quad c= \pm \frac{1}{2}$
The last two could NoT happen by Theorem 4.6.
(c) Similar argument. Assume $\left[x_{\alpha}, x_{p}\right]=0$, consider

$$
V=\sum_{n \leq 0} y_{\beta+n \alpha}
$$

$\Rightarrow \quad \operatorname{add}_{x_{\alpha}} \quad$ ad $x_{-\alpha} \quad$ ad H_{-}keep it invariant.

$$
\begin{aligned}
\Rightarrow \quad 0 & =\operatorname{tr}\left(\left.a d H_{\alpha}\right|_{V}\right)=\sum_{n \leqslant 0}(\beta+n \alpha)\left(H_{\alpha}\right) \\
& =B(\alpha, \beta)(1+p)+\sum_{-p \leq n \leq 0} B(\alpha, \alpha) n \\
& \Rightarrow B(\alpha, \beta)(t p)+(1+p) \cdot\left(\frac{-p}{2}\right) B(\alpha \alpha)=0
\end{aligned}
$$

$$
\Rightarrow \quad \frac{2 B(\alpha, \beta)}{B(\alpha, \alpha)}=P
$$

$\Rightarrow 9=0$. Namely the string of α Containing β is

$$
\beta+n \alpha \text { for } p \leqslant n \leqslant 0 \quad B \operatorname{lit} \beta+\alpha \in \Delta \text {. }
$$

This is a contradiction!
$\left[\begin{array}{l}\text { prof of of © Shows that } \nexists \text { any } \\ \text { other consecutive strings }\end{array}\right]$
(2) The list of complex simple algebras.
$A_{n} B_{n} C_{n} D_{n} \quad-\quad i n f i n i t e ~ s e r i e s . ~$
They are called classical.

$$
\left\{\begin{array}{lll}
E_{6} & E_{7} & E_{8} \\
F_{4} & \\
G_{2}
\end{array} \quad \begin{array}{l}
\text { there are called exuptional ones. } \\
\text { The existences are Not obvious. } \\
\text { Lectures on ExCeptional Lie Groups. J. F. Ado }
\end{array}\right.
$$

Lectures on Exceptional Lie Groups. J. F. Adams.
One can get the list by studying the structure of the roots
We shall lookinto the classical examples first to get some feel of it.
What are the compact Lie groups?
$S \ell(n+1, \mathbb{C}) A_{n} \longrightarrow \frac{S(J(n+1), n \geqslant 1}{n \geqslant 2}$ since $S O(3)$ covered by $S U(2)$
$\left.\begin{array}{l}O(2 n+1, \mathbb{C}) B_{n}<\longrightarrow \quad \begin{array}{l}B_{0}(2 n+1) \\ O(2 n, \mathbb{C})\end{array} D_{n} \longleftrightarrow \longrightarrow(2 n) n \geq 4\end{array}\right\} \begin{aligned} & \text { since the roots structure } \\ & \text { ave different }\end{aligned}$

Not ${ }^{n=2}$ so iv) Not simply covered by sp(1) x sp (1). Sol) Covered NOt simply-connected. Its universal coven by Sulu)
Ise-Takenchi
p36-39. \quad Spin $k) \in$ It is constructed via
clifford algebra
$C_{n} \longleftrightarrow \longrightarrow \rho(n)$ - the isometries preserves the product $(-\mathbb{H}-$ - Hemirition) U" $\mid H^{\prime}$ " Pase $26-27$ of Bill er n-dimensional quwtonisns.

Note: $S p(n)$ here is the same as Ziller
$S p(n) \neq S p(n, \mathbb{R})$, nor $s p(n, \mathbb{C})$

$$
\begin{aligned}
& T=\left[\begin{array}{lll}
z_{1} & & \\
& & \\
& & z_{n+1}
\end{array}\right] \\
& =\left[\begin{array}{ll}
e^{i \theta_{1}} & \\
& e^{i \theta_{n 1}}
\end{array}\right] \\
& \prod_{v=1}^{n+1} z_{n}=1 \\
& |z:|=1 \\
& \Rightarrow t=\left[\begin{array}{lll}
i \theta_{1} & & \\
& \ddots & \\
& & i \theta_{1}
\end{array}\right] \quad \sum_{i=1}^{n+1} \theta_{i}=0 \\
& \eta=t \otimes \mathbb{C}=\left[\begin{array}{lll}
\lambda_{1} & & \\
& \ddots & \\
& & \lambda_{n+1}
\end{array}\right] \quad \sum_{i=1}^{n+1} \lambda_{i}=0 \\
& H=\sum k_{i} E_{i i} \\
& \left\{E_{i j}\right\} \quad i \neq j \text { satisfies } \\
& \operatorname{ad}_{H} E_{i j}=\sum \lambda_{k}\left[E_{h l}, E_{i j}\right] \\
& =\sum \lambda_{k}\left(\delta_{k i} E_{k j}-\delta_{j k} E_{i h}\right) \\
& =\lambda_{i} E_{i j}-\lambda_{j} E_{i j}=\underbrace{\left(\lambda_{i}-\lambda_{j}\right) E_{i j}}
\end{aligned}
$$

Hence $\alpha_{i j}(H)=\lambda_{i}(H)-\lambda_{j}(H)$ are the roots.
The generators canke chosen as $\left(\begin{array}{ccc}\lambda_{1}^{1}-\lambda_{2} & \cdots & \left.\lambda_{n-1}-\lambda_{n}, \lambda_{n}-\lambda_{n+1}\right)\end{array}\right.$

$$
\begin{aligned}
& \alpha_{i j}=\sum_{k=i}^{j-1} \lambda_{k}-\lambda_{k+1} \\
&=\sum_{k=i}^{j-1} \alpha_{k} \quad d_{i}(\eta)=n
\end{aligned}
$$

(3) $\eta_{\mathbb{R}} \doteq \sum_{\alpha \in \Delta} \mathbb{R} \cdot H_{\alpha}$

Proposition 4.10:
(a) $\left.B\right|_{\eta_{\mathbb{R}}}>0$
(This part constructs a compact Lie algebra for any red semi- single one
(5) $\eta_{\mathbb{R}}$ is the real form of η. (ie. $\eta=\eta_{R} \oplus i \eta_{\mathbb{R}}$)

If: $\quad \overrightarrow{B\left(H, H^{\prime}\right)}=\operatorname{tr}\left(a d_{H} a d_{H^{\prime}}\right) \quad x_{\alpha} \in Y_{\alpha} \quad g=\eta \oplus \sum g_{\alpha}$

$$
\begin{aligned}
& \in \eta
\end{aligned}
$$

$$
\begin{align*}
& =\sum_{\substack{\alpha \in \Delta \\
>}} \alpha(H) \alpha\left(H^{\prime}\right) \tag{*}
\end{align*}
$$

$$
\begin{aligned}
& \text { Hence } \\
& B\left(H_{\alpha}, H_{\alpha}\right)=\sum_{\gamma \in \Delta} \underbrace{\gamma\left(H_{\alpha}\right)^{2}}=\sum_{\gamma}^{2} B^{2}\left(H_{\gamma} H_{\alpha}\right) \quad \begin{array}{l}
\gamma(H) \\
=B\left(H_{\gamma}, H\right)
\end{array} \\
& \text { But } n_{\alpha \gamma}=\frac{2 B\left(H_{\alpha} H_{\mu}\right)}{B\left(H_{\alpha} H_{\alpha}\right)} \\
& \left.\begin{array}{l}
\left.\Rightarrow B\left(H_{\gamma,} H_{\alpha}\right)=\frac{n_{\alpha \gamma}}{2} B_{\left(H_{\alpha}\right.} H_{\alpha}\right)
\end{array}\right) \quad \begin{array}{l}
\quad\left(\frac{4}{\sum_{\gamma \in \Delta} \frac{4}{n_{\alpha \gamma}^{2}}}>0\right.
\end{array} \\
& * *
\end{aligned}
$$

Hence $B\left(H_{\beta}, H_{\alpha}\right)=\frac{n_{\alpha \beta}}{2}\left(\frac{4}{\sum_{r \in 0} n_{\alpha \beta}^{2}}\right) \quad$ real
Namely $\left.B\right|_{\eta_{B}}$ is real.
$\forall H \in \eta_{\mathbb{R}} \quad \stackrel{\mathbb{R}}{\exists} \alpha \in \Delta$ such that $\quad \alpha(H) \neq 0 \quad\binom{$ Since }{$\alpha \in \Delta \operatorname{spans}^{\eta}}$ $\mathbb{K}_{\alpha}(H) \in \mathbb{R}$ by the above.

Moresuer $\gamma(H)$ is real

For (b): $\underbrace{\left.\eta_{\mathbb{R}} \otimes \mathbb{C} \text { clearly } \simeq \eta \text { since }\left\{H_{\alpha}\right\} \text { spans } \eta .\right\}}$
On the other hand $\quad(\eta \mathbb{R}) \eta\left(-\eta_{\mathbb{R}}\right)=\{0\}$
Since $B(x, x)>0$ for x in $\eta_{\mathbb{R}} x \neq 0$
η_{R} complexfices $\eta_{\text {pis the }}$ into η

$$
B(i x, i x)=-B(x, x)<0 \quad \text { for } x \text { in } \eta_{\mathbb{R}} \text {. }
$$

$$
\text { real form of } \eta
$$

Corollary: (a) If $\underset{\substack{r, \beta \in \Delta \\ \pm \alpha \neq \beta}}{ } \beta-\frac{2 B(\alpha, \beta)}{\beta(\alpha, \alpha)} \alpha \in \Delta^{-p \leq q-p \leq i}$ $\beta-(p-q) \alpha$
(b) $n_{\alpha \beta,} n_{\beta \alpha} \sqrt{k}_{\in}^{ \pm \neq \beta}\{0,1,2,3\}$. $\left[\begin{array}{l}\text { In serve, the root system } \\ \text { is define d unis this } \\ \text { property } \\ \text { sxionctichll }\end{array}\right]$
Pf: $n_{\alpha \beta}=p q \quad\{\beta+n \alpha\} \quad-p \leqslant n \leqslant 9$ is a connectives
(a) String \Rightarrow

$$
\begin{aligned}
& -q \leqslant \underbrace{(p-s) \alpha}_{\leqslant p} \\
& \text { (b) Since } B \text { in as inner product } \\
& \Rightarrow \quad n_{\alpha \beta}=\frac{2|\alpha||\beta| \cos \psi\left(H_{\alpha} n_{\beta}\right)}{|\alpha|^{2}} \quad \int \text { \& inner product } \quad \begin{array}{c}
4 \cos ^{2} \phi(\alpha, \beta) \\
4 \text { Not possible } \\
\alpha \neq \pm \beta
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& n_{\alpha \beta}:=\frac{2 B(\beta, \alpha)}{B(\alpha, \alpha)}=2 \frac{|\beta| \alpha \mid \cos \gamma\left(H \alpha H_{\beta}\right)}{|\alpha|^{2}}=2 \frac{|\beta|}{|\alpha|} \cos \alpha\left(H_{\alpha} H_{\beta}\right) \\
& n_{\beta \alpha}:=\frac{2 B(\alpha, \beta)}{B(\beta, \beta)}=2 \frac{|\alpha||\beta|}{|\beta|^{2}} \cos \not \gamma\left(H_{\alpha} H_{\beta}\right) \\
& n_{\alpha \beta} \cdot n_{\beta \alpha}=4 \cos ^{2} \alpha\left(H_{\alpha}, H_{\rho}\right)<4 \\
& \Rightarrow \quad \cos ^{2} \rho=\frac{1}{4} r \quad r=\left\{\begin{array}{l}
0 \\
\frac{1}{2} \\
3
\end{array}\right. \\
& \Rightarrow \quad \cos \varphi=\varepsilon \frac{1}{2} \sqrt{r} \quad \varepsilon= \pm 1 \\
& \varphi=\left\{\begin{array}{lll}
\frac{\pi}{2} & \frac{3 \pi}{2} & \text { if } r=0 \\
\frac{\pi}{3} & \frac{2}{3} \pi & r=1 \\
\frac{\pi}{4} & \frac{3}{4} \pi & r=2 \\
\frac{\pi}{6}, & \frac{5 \pi}{6} & r=3
\end{array}\right.
\end{aligned}
$$

