• The proof of items (1) & (2)
(1) The proof of items (1) & (2)
(2) means
The part (1) of Part A lecture
$$\Rightarrow$$
 $\forall x \in 9$ \exists 9
Ad(g)(X) $\in t$. (2) shows that t_{for} & g_{Ad} can
be identified.
Given $x \in t$ $G(X)$ be the orbit $Ad(G)(X)$. if $Y \in Ad(G)(X)$ Πt
the goal is to show that $\exists n \in N(T)$ $Ad(a)(X) = T$
 $Y = Ad(g)(X)$
Let $Z(X) := \{ \alpha \in G \}$ $Ad(\alpha)(X) = X \}$. — (entreliger of X in G
Sin($x \in Z(X)$, $T \in (Z(X))_0$. Ad($exp(tZ)$)(X) = $e^{tad_Z} X = X$
Ad $g^{T} = g$ (X) $X = X$ (X)
Sin($x = Ad(g)(XZ) = X$ (X)
 $= Ad(g)(X) = X$ (X)
 $= Ad(g)(X) = X$ (X)
 $= Ad_{g^{-1}} (Ad_{exp(XZ)}) (S^{-1}exp(XZ)g)^{-1}$
 $= Ad_{g^{-1}} (Ad_{exp(XZ)}) (Ad_{g}(X))$
 $= Ad_{g^{-1}} Ad_{exp(XZ)} (T)$
 $= Ad_{g^{-1}} (T) = X$
 $\Rightarrow (X)$
Noticely $g^{T} = C (Z(X))_{0}$ as well.
by Cantan-Weyl-Higs $\Rightarrow \exists h \in (Z(X))_{0}$ h $Th^{-1} = S^{T} TS$
 $\Rightarrow (gh)(T)(Sh^{-1} = T)$

 \implies $n = jh \in N(T)$ But $Ad(n)(X) = Ad(S) \underline{Ad(L)(X)} = Ad(S)(X) = Y$ $\begin{array}{c} T \longrightarrow & G_T \\ \downarrow & \ddots & \downarrow \end{array}$ At the group level: The -> G/Ad G(x,)={ gx, 5-] seef Namely if XIET with XIE G(XI) NT the orbit & if G(x1) nT has x2 $\chi_2 = g \chi_1 g^{-1}$ for some g We want to prove = n E N(T) such that x2 = nx, n-1 Consider $Z(x_1) = Z(\overline{\{x_1\}})$ the group generated by x, (a torus) Clearly TC(Z(x1)) Since axi=xia Vaei 5-1TS c(Z (201)) as well since $(\mathcal{G}^{-1}\alpha \mathcal{G})(\mathcal{X}_{1}) = \mathcal{G}^{-1} \underbrace{\alpha(\mathcal{X}_{2})}_{\mathcal{X}_{2}} \mathcal{G} = \mathcal{G}^{-1} \mathcal{X}_{2} \mathcal{G} \mathcal{G} = (\mathcal{G}^{-1} \mathcal{X}_{2} \mathcal{G}) (\mathcal{G}^{-1} \mathcal{G})$ Namely 5tag commutes with x, $\Rightarrow \exists h \in (Z(x_1))_0$ Such that $h_T h'' = 5'T_S$ But $n_{2}(n^{-1}) = gh(x_{1}h^{-1}g^{-1}) = gx_{1}g^{-1} = x_{2}$ (e). Comider Y∈t& Ad(G)(Y), ∀w∈g Ad(exp(tw))(Y) is a path CHLI, CIN=Y. VXEL $\langle c'_{10}\rangle, \chi \rangle = \frac{d}{dt} \langle Ad(exptw)(Y), \chi \rangle = \langle [w, Y], \chi \rangle = \langle w, [Y, Y] \rangle$

(2) Examples Confliction

$$\begin{aligned}
(3) Examples Confliction
B(x, Y) = tr (ad_x ad_y)
B(x, Y) = tr (ad_x ad_y)
x=hid =>
hav(B) \neq 0.
(i) U(n) is NoT Semi-simple
(ii) T = {
$$\begin{aligned}
[2] T = {
[2] T = {$$$$

(iv)
$$\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} a & 0 \\ b & b \end{pmatrix} \begin{pmatrix} 0 & -1 \\ 1 & p \end{pmatrix}$$

$$= \begin{pmatrix} 0 & b \\ -c & 0 \end{pmatrix} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} b & 0 \\ 0 & 4 \end{pmatrix}$$

$$\begin{bmatrix} z_{1} & & & \\ & z_{2} \end{bmatrix} \xrightarrow{-2} \begin{bmatrix} z_{1} & & & \\ & z_{2} \end{bmatrix} \xrightarrow{-2} \begin{bmatrix} z_{1} & & & \\ & z_{2} \end{bmatrix}$$
is obtained by Ad setion.

$$\Rightarrow \begin{bmatrix} \overline{z}_{1} & & & \\ & & z_{2} \end{bmatrix} \xrightarrow{-2} \begin{bmatrix} \overline{z}_{1} & & & \\ & z_{2} \end{bmatrix} \xrightarrow{-2} \begin{bmatrix} z_{1} & & & \\ & z_{2} \end{bmatrix} \xrightarrow{-2} \begin{bmatrix} z_{1} & & & \\ & z_{2} \end{bmatrix} \xrightarrow{-2} \begin{bmatrix} z_{1} & & & \\ & z_{2} \end{bmatrix} \xrightarrow{-2} \begin{bmatrix} z_{1} & z_{2} \end{bmatrix} \xrightarrow{-2} \\ \xrightarrow{-2} & z_{1} & z_{2} \end{bmatrix} \xrightarrow{-2} \begin{bmatrix} z_{1} & z_{2} \end{bmatrix} \xrightarrow{-2} \begin{bmatrix} z_{1} & z_{2} \end{bmatrix} \xrightarrow{-2} \\ \xrightarrow{-2} & z_{2} \end{bmatrix} \xrightarrow{-2} \begin{bmatrix} z_{1} & z_{2} \end{bmatrix} \xrightarrow{-2} \\ \xrightarrow{-2} & z_{2} \end{bmatrix} \xrightarrow{-2} \begin{bmatrix} z_{1} & z_{2} \end{bmatrix} \xrightarrow{-2} \\ \xrightarrow{-2} & z_{$$