Two very good books. Serve: Serve: Survive complex Lie
Humphrage: I. to Lie cly & representation
The 2nd explains the 1st. Occasionally make it warrie, so use istalso
()
Nilpotent, Solvable, Serve-simple Lie algebras

$$g^{k}$$
 is defined as $g^{2} = g$ $g^{l} = [g, g^{l}]$ $l \ge 1$
 $[a, L] = Span { [u, v], u \in a, v \in b } two ideals.$
Nilpotent (of step k) if $g^{k} = b$, $g^{k-l} \neq b$.
E.g. $g_{u} = {A \in M_{uvu} | a_{vj} = 0, \forall j \le use } {A \in M_{uvu} | a_{vj} = use } {A \in M_{uvu} | a_{vj} = use } {A \in M_{uvu} | a_{vj} = 0, \forall j \le use } {A \in M_{uvu} | a_{vj} = 0, \forall j \le use } {A \in M_{uvu} | a_{vj} = 0, \forall j \le use } {A \in M_{uvu} | a_{vj} = 0, \forall j \le use } {A \in M_{uvu} | a_{vj} = 0, \forall j \le use } {A \in M_{uvu} | a_{vj} = 0, \forall j \le use } {A \in M_{uvu} | a_{vj} = 0, \forall j \le use } {A \in M_{uvu} | a_{vj} = 0, \forall j \le use } {A \in M_{uvu} | a_$

$$\Rightarrow (x \cdot y)_{ij} = o \quad \forall \quad j \leq$$

$$\Rightarrow \quad x \cdot y \in (y_{1} + i))$$

Similarly,
$$(Y, X)_{ij} = Y_{ik} X_{ij}$$

 $\Rightarrow \begin{array}{c} k \ge i + x + i \\ j \ge k + i \end{array}$

to have $(Y, X)_{ij} \neq 0$.

This shows $\left[\begin{array}{c} q_{b} & q_{b} \end{array}\right] \subset \overline{q}_{(i)}$

 $\left[\begin{array}{c} \overline{q}_{(b)} & q_{(s)} \end{array}\right] \subset \overline{q}_{(i+1)}$

Hence Y_{b1} is a step n-1 nilpotent Lie algebra.

 $ad_{a} = \begin{bmatrix} 0 & 1 & 1 \\ 0 & 0 \end{bmatrix} \quad n - 2 - step \neq 0$.

It is easy to see $\overline{q}_{(s)}$ is $n - s - 1$ step nilpotent Lie algebra.

Engel's theorem.

Freeisely if $\forall x \in q$ $(d_{x})^{k} = 0$. It is posent.

Precisely if $\forall x \in q$ $(d_{x})^{k} = 0$. It is posent.

Precisely if $\forall x \in q$ $(d_{x})^{k} = 0$. It is posent.

Precisely if $\forall x \in q$ $(d_{x})^{k} = 0$. It is posent.

Precisely if $\forall x \in q$ $(d_{x})^{k} = 0$.

From $k \Rightarrow q$ is nilpotent.

Pf. See Pape 13 of Ham.

Solvable Lie algebra:
$$\Im_{k}$$
 is defined as
 $\Im_{0} = \Im \qquad \Im_{1} := [\Im_{1} , \Im_{1}]$ $I \ge 1$
 $k-step solvable, if $\Im_{k} = 0$, $\Im_{k-1} \neq 0$
 $\operatorname{dearly} \ \Im_{1} \subset \Im^{1} \Longrightarrow \operatorname{Nilpotent} \operatorname{must} \operatorname{be} \operatorname{solvable}.$$

(c):
$$\eta_{u} := \left\{ A \mid G_{ij} = 0 \quad \forall i \neq j \right\}$$

$$X = \begin{pmatrix} \chi_{i1} \chi_{12} \cdots \chi_{n} \\ \sigma & \chi_{n} \cdots \chi_{n} \\ \vdots & \vdots & \vdots \\ 0 & \sigma & \cdots & \chi_{n} \end{pmatrix}$$

$$Y = Similer$$

$$X \cdot y = \begin{pmatrix} \chi_{i1}y_{11} & \chi_{i2} & \chi_{i1} \\ \sigma & \sigma & \chi_{in}y_{in} \end{pmatrix}$$

$$Y \cdot \chi \quad Some form \int_{0}^{0} \eta_{in}$$

$$\Rightarrow \quad \left\{ \eta_{u}, \eta_{n} \right\} \subset \left\{ \eta_{ij} \right\}$$

$$in the last example$$

$$Now \quad \left\{ \eta_{u} \right\}_{i} \subset \left\{ \eta_{ij} \right\}$$

$$\left\{ \eta_{u} \right\}_{i} \in \left\{ \eta_{i} \in \left\{$$

Proposition 3.2 Let \mathfrak{g} be a Lie algebra which is k step nilpotent resp. k step solvable. The following are some basic facts:

- (a) $\mathfrak{g}_i \subset \mathfrak{g}^i$ for all *i*. In particular, \mathfrak{g} is solvable if it is nilpotent.
- (b) \mathfrak{g}^i and \mathfrak{g}_i are ideals in \mathfrak{g} .
 - (c) If \mathfrak{g} is nilpotent, then $\{\mathfrak{g}^{k-1}\}$ lies in the center. If \mathfrak{g} is solvable, $\{\mathfrak{g}_{k-1}\}$ is abelian.
 - (d) A subalgebra of a nilpotent (solvable) Lie algebra is nilpotent (solvable).
 - (e) If $\mathfrak{a} \subset \mathfrak{b}$ is an ideal of the Lie algebra \mathfrak{b} , we let $\mathfrak{a}/\mathfrak{b}$ be the quotient algebra. If \mathfrak{a} is solvable (nilpotent), $\mathfrak{a}/\mathfrak{b}$ is solvable (nilpotent). (f) Let

$$0 \to \mathfrak{a} \to \mathfrak{b} \to \mathfrak{c} \to 0$$

be an exact sequence of Lie algebras. If \mathfrak{a} and \mathfrak{c} are both solvable, then \mathfrak{b} is solvable. In general the corresponding statement is not true for for nilpotent Lie algebras.

(g) Let \mathfrak{a} , \mathfrak{b} be solvable (nilpotent) ideals, then the vector sum $\mathfrak{a} + \mathfrak{b}$ is a solvable (nilpotent) ideal.

Proof We only present the proof of some of them, since most easily follow by using the Jacobi identity and induction on i.

(b) The Jacobi identity implies that \mathfrak{g}^i is an ideal in \mathfrak{g} , and similarly \mathfrak{g}_i is an ideal in \mathfrak{g}_{i-1} . To see that \mathfrak{g}_i is an ideal in \mathfrak{g} , one shows by induction on k that \mathfrak{g}_i is an ideal in \mathfrak{g}_{i-k} .

(f) Let $\phi: \mathfrak{a} \to \mathfrak{b}$ and $\psi: \mathfrak{b} \to \mathfrak{c}$ be the Lie algebra homomorphisms in the exact sequence. Clearly, $\psi(\mathfrak{b}_k) \subset \mathfrak{c}_k$. Since $\mathfrak{c}_k = 0$ for some k, exactness implies that $\mathfrak{b}_k \subset \operatorname{Im}(\mathfrak{a}_k)$ and since $\mathfrak{a}_m = 0$ for some m, we also have $\mathfrak{b}_m = 0$.

(g) Consider the exact sequence of Lie algebras

$$0 \to \mathfrak{a} \to \mathfrak{a} + \mathfrak{b} \to (\mathfrak{a} + \mathfrak{b})/\mathfrak{a} \to 0.$$

Since $(\mathfrak{a} + \mathfrak{b})/\mathfrak{a} \simeq \mathfrak{b}/(\mathfrak{a} \cap \mathfrak{b})$, and since $\mathfrak{b}, \mathfrak{a} \cap \mathfrak{b}$ are solvable ideals, $(\mathfrak{a} + \mathfrak{b})/\mathfrak{a}$ is a solvable ideal as well. Thus (f) implies that $\mathfrak{a} + \mathfrak{b}$ is a solvable ideal.

The nilpotent case follows by showing that $(\mathfrak{a} + \mathfrak{b})^k \subset \sum_i \mathfrak{a}^i \cap \mathfrak{b}^{k-i}$ via induction.

Example 3.3 a) The set of $n \times n$ upper-triangular matrices is an n-step solvable Lie subalgebra of $\mathfrak{gl}(n,\mathbb{R})$, and the set of $n \times n$ upper-triangular

(b).
$$\Im^{i}$$
 is easier
 $g' = [\Im \ g]$ is an ideal
Sink $\forall [x, y] \quad \mathfrak{deg}$
 $[[x, g], \mathfrak{deg}'$
Now assume $g^{i,1}$ is an ideal.
We have $[\Im, g^{i,1}] = \Im^{i}$
 $\forall e \operatorname{fgi}' [[x, y], \mathfrak{deg}'] \quad for finition
 $\forall e \operatorname{fgi}' [[x, y], \mathfrak{deg}'] \quad for finition
For \Im_{i} it is a little harder.
 $\Im_{i} = [\Im, \Im]$ is as above.$$

Clearly $g_i = [g_{ii}, g_{ii}]$ is an ideal in g_{ii} We show inductively show g_i is an ideal in G_{ii-k} . Assum holds for k. So $i \ge k+1$ $Y \ge G_{ii}$ $g \in g_{ii-k+1}$ $y = g_{ii}$ $\left[[x, y], g \right] = - [[y, g], x] - [[g x], g]$ $\left[[x, y], g = - [[y, g], x] - [[g x], g] \right]$ $f = g_i$

Hence of is an ideal in Si-(k+1)