Two very good books. Sere: Semi-single complex Lie
Humphreys: Intr te Lie clos \& representation
The and explains the 1st. Occasionally mate it worse, so use istalso.
(1)

Nilpotent, Solvable, Semi-simple Lie algebras g^{k} is defined as $g^{0}=g \quad q^{l}=\left[g, g^{l-1}\right] \quad l \geqslant 1$

$$
[a, b]=\operatorname{spun}\{[u, v], \quad u \in a, v \in b\} \quad \text { two, } b \text { ideals. }
$$

$$
\text { Nilpotent (of step } k \text {) if } \quad g^{k}=0, \quad g^{k-1} \neq 0 \text {. }
$$

E.g. $\sigma_{y}=\left\{\begin{array}{cc}A \in M_{n+n} \mid \quad a_{i j}=0, & \forall j \leqslant i+s\end{array}\right\}$

$$
\begin{aligned}
& g_{(0)}>\cdots \supset g_{(n-1)}
\end{aligned}
$$

observe, $(x \cdot y)_{i j}=x_{i \underline{ } k} y_{k j}=0$ if $j \leqslant i+s+1, \quad x \in \mathcal{g}_{(0)}, \quad y \in g_{(s)}$

$$
\begin{aligned}
& \& \sum_{j \geqslant k+s+1}^{k \geqslant i+1} \Rightarrow \frac{j \geqslant i+s+2}{\text { to have }^{j}} \text { is needed } \\
& x_{i h} y_{k j} \neq 0 \\
& \Rightarrow(x \cdot y)_{i j}=0 \quad \forall j \leqslant i+s+1 \\
& \Rightarrow x \cdot y \in Y_{(s+1)}
\end{aligned}
$$

Similarly, $\quad(y \cdot x)_{i j}=y_{\underline{i k}} x_{k j}$

$$
\Rightarrow \quad \begin{aligned}
& k \geqslant i+s+1 \\
& j \geqslant k+1
\end{aligned} \Rightarrow j \geqslant i t s+2 \text { is necessary }
$$

to have $(y, x)_{i j} \neq 0$.
Thin shows $\underbrace{q_{b}} \underline{g}_{(0)}] \subset \mathcal{g}_{(1)}$

$$
\left[\begin{array}{ll}
q_{(0)} & q_{(s)}
\end{array}\right] \subset \quad \sigma_{(s+1)}
$$

Hence $G_{(0)}$ is a step $n-1$. nilpotent Lie algebra.

$$
a_{a} d_{a}^{h-2} \quad a=\left[\begin{array}{lll}
0 & a & \\
\ddots & \ddots & \\
& & \\
& & 0
\end{array}\right] \quad n-2-\operatorname{stap} \neq 0 .
$$

It is easy to see $\mathcal{Z}_{(s)}$ is $n-s-1$ step nilpotent lie algebra.
Engels's theorem. The general nilpotent Lie algebra is Similar to the above example.
precisely if $\forall x \underbrace{x \in} \mathcal{f} \underbrace{\left(a d_{x}\right)^{k}=0 \text {. fr soma } k \Rightarrow \mathcal{G}^{g} \text { nilpotent. }}_{\sim}$
Pf. See pase 13 of Han.

Solvable Lie algebra: \mathcal{G}_{k} is defined us

$$
\underbrace{q_{0}=g \quad, q_{l}:=\left[g_{l+1}, \sigma_{l-1}\right] \quad l \geq 1}_{0}
$$

k-step solvable, if $\sigma_{g_{k}=0} \sigma_{l-1} \neq 0$
clearly $g_{l} \subset g^{l} \Rightarrow$ Nilpotent must be solvable.
(e.9): $q_{u}:=\left\{A \quad \mid \quad a_{i j}=0 \quad \forall i>j\right\}$

$$
\begin{aligned}
& x=\left(\begin{array}{cccc}
x_{11} & x_{12} & \cdots & x_{12} \\
0 & x_{22} & \cdots & x_{2 n} \\
\vdots & \vdots & & \vdots \\
0 & 0 & \cdots & x_{n n}
\end{array}\right) \quad y=\operatorname{similan} \\
& x \cdot y=\left(\begin{array}{cccc}
\frac{x_{11} y_{11}}{0} & * & & * \\
\vdots & \frac{x_{22} y_{n 2}}{i} & \cdots & * \\
0 & 0 & & x_{n n} y_{n n}
\end{array}\right.
\end{aligned}
$$

$$
y, x>\operatorname{som} \text { form }{g_{x}}_{u}
$$

$\Rightarrow \underbrace{\left[q_{u}\right.} \begin{array}{ll}q_{n}\end{array}] \subset{ }_{j(0)}^{0}$ in the last example

$$
\begin{array}{ll}
\text { Now } & \underbrace{\left(\gamma_{u}\right)_{1}} \subset \gamma_{(0)} \\
\Rightarrow & \left(\gamma_{u}\right)_{2} \subset \gamma_{(1)} \\
& \left(\gamma_{n}\right)_{3} \subset \gamma_{(2)} \quad\left(\text { Infant in } \gamma_{(3)}\right)
\end{array}
$$

$$
\Rightarrow q_{n} \text { is solvable }
$$

Lie's theorem: $\forall \rho: y \rightarrow Y(N, \mathbb{C})$ then $\rho(g)$ is like the example above. (of is solvable)
Namely one may put $\rho(g)$ upper - triangular.
Pf: See Hum P.6.
Prop 3.2 of ziller lists some useful facts.

Proposition 3.2 Let \mathfrak{g} be a Lie algebra which is k step nilpotent resp. k step solvable. The following are some basic facts:
(a) $\mathfrak{g}_{i} \subset \mathfrak{g}^{i}$ for all i. In particular, \mathfrak{g} is solvable if it is nilpotent.
(b) \mathfrak{g}^{i} and \mathfrak{g}_{i} are ideals in \mathfrak{g}.
(c) If \mathfrak{g} is nilpotent, then $\left\{\mathfrak{g}^{k-1}\right\}$ lies in the center. If \mathfrak{g} is solvable, $\left\{\mathfrak{g}_{k-1}\right\}$ is abelian.
(d) A subalgebra of a nilpotent (solvable) Lie algebra is nilpotent (solvable).
(e) If $\mathfrak{a} \subset \mathfrak{b}$ is an ideal of the Lie algebra \mathfrak{b}, we let $\mathfrak{a} / \mathfrak{b}$ be the quotient algebra. If \mathfrak{a} is solvable (nilpotent), $\mathfrak{a} / \mathfrak{b}$ is solvable (nilpotent).
(f) Let

$$
0 \rightarrow \mathfrak{a} \rightarrow \mathfrak{b} \rightarrow \mathfrak{c} \rightarrow 0
$$

be an exact sequence of Lie algebras. If \mathfrak{a} and \mathfrak{c} are both solvable, then \mathfrak{b} is solvable. In general the corresponding statement is not true for for nilpotent Lie algebras.
(g) Let $\mathfrak{a}, \mathfrak{b}$ be solvable (nilpotent) ideals, then the vector sum $\mathfrak{a}+\mathfrak{b}$ is a solvable (nilpotent) ideal.

Proof We only present the proof of some of them, since most easily follow by using the Jacobi identity and induction on i.
(b) The Jacobi identity implies that \mathfrak{g}^{i} is an ideal in \mathfrak{g}, and similarly \mathfrak{g}_{i} is an ideal in \mathfrak{g}_{i-1}. To see that \mathfrak{g}_{i} is an ideal in \mathfrak{g}, one shows by induction on k that \mathfrak{g}_{i} is an ideal in \mathfrak{g}_{i-k}.
(f) Let $\phi: \mathfrak{a} \rightarrow \mathfrak{b}$ and $\psi: \mathfrak{b} \rightarrow \mathfrak{c}$ be the Lie algebra homomorphisms in the exact sequence. Clearly, $\psi\left(\mathfrak{b}_{k}\right) \subset \mathfrak{c}_{k}$. Since $\mathfrak{c}_{k}=0$ for some k, exactness implies that $\mathfrak{b}_{k} \subset \operatorname{Im}\left(\mathfrak{a}_{k}\right)$ and since $\mathfrak{a}_{m}=0$ for some m, we also have $\mathfrak{b}_{m}=0$.
(g) Consider the exact sequence of Lie algebras

$$
0 \rightarrow \mathfrak{a} \rightarrow \mathfrak{a}+\mathfrak{b} \rightarrow(\mathfrak{a}+\mathfrak{b}) / \mathfrak{a} \rightarrow 0
$$

Since $(\mathfrak{a}+\mathfrak{b}) / \mathfrak{a} \simeq \mathfrak{b} /(\mathfrak{a} \cap \mathfrak{b})$, and since $\mathfrak{b}, \mathfrak{a} \cap \mathfrak{b}$ are solvable ideals, $(\mathfrak{a}+\mathfrak{b}) / \mathfrak{a}$ is a solvable ideal as well. Thus (f) implies that $\mathfrak{a}+\mathfrak{b}$ is a solvable ideal.

The nilpotent case follows by showing that $(\mathfrak{a}+\mathfrak{b})^{k} \subset \sum_{i} \mathfrak{a}^{i} \cap \mathfrak{b}^{k-i}$ via induction.

Example 3.3 a) The set of $n \times n$ upper-triangular matrices is an n-step solvable Lie subalgebra of $\mathfrak{g l}(n, \mathbb{R})$, and the set of $n \times n$ upper-triangular
(b). g^{i} is easier
$g^{\prime}=\left[\begin{array}{ll}g & g\end{array}\right]$ is an idea
$\sin 4 \forall \quad[x, y] \quad z \in g$

$$
[[x, y], 3] \in^{\in g \prime}
$$

Now assume g^{i-1} is an ideal.
We have $\left[g, g^{i-1}\right]=g^{i}$

$$
\begin{aligned}
& x \in \operatorname{gin}_{i-1} \longrightarrow G^{i} \text { by the } \\
& y \in g \quad[\underbrace{[x, y]}_{\in g^{i-1}}, z] \quad \text { definition } \\
& \text { by the induction }
\end{aligned}
$$

For ξ_{i} it is a lisle harder. $q_{1}=[\eta, y]$ is as above.

Now assume G_{i-1} is an ideal We want to show g_{i} is an ideal.

Clearly $g_{i}=\left[\begin{array}{ll}g_{n-1} & g_{i-1}\end{array}\right]$ is an ideal in g_{i-1}
We show inductively show g_{i} is an ided in
G_{i-k}.
Assume holds fr k. $\quad i \geqslant k_{t 1}$

$$
\begin{aligned}
& \forall x \in \mathcal{g}_{i-1} \quad z \in g_{i-(k+1)} \quad k^{g_{i-1}} \\
& [\underbrace{[x, y]}_{\in g_{i}}, z]=-\underbrace{[\underbrace{[y}_{g_{i-1}} z]}_{\substack{b_{y} \rightarrow \in \\
\text { the induction }}}, x]-\left[\begin{array}{cc}
{[z} & x], y]
\end{array} \mathcal{F}_{i-1}\right] \\
& \in g_{i}
\end{aligned}
$$

Hence G_{j} is an ideal in $G_{i-(k+1)}$

