Representation of Compact Lie groups
(A) Basic concepts \& the main result.
$P: G \longrightarrow G L(r, V)$ a Lie group homomorphism is called a representation
$d f:$ of $\rightarrow g l(r . V)$ is a Lie algebra representation

Study one of these two.
dp: of \rightarrow gl (r.V) - method will be more algebraic
E.5). Ad: $G \rightarrow G L(n . g)$ is a Lie group representation called adjoint representation.
ad: $g \rightarrow \mathcal{G}_{l}(n, g)$ is intro called the adjoint representation

$$
x \rightarrow a d_{X}=g \rightarrow g \quad \operatorname{cd}_{x}(y)=[X, Y]
$$

We start with 8-definitions.
(1) ρ is called faistful if $\operatorname{ker} \rho=\{e\}$
(2) V in the definition is called a G-space $\rho(g) u$ also written as gu.
(3) $f: V \rightarrow W$. $V . W$ are two G-spaces
is calked a G-map if

$$
\begin{aligned}
& f(g \cdot v)=g \cdot f(v) \quad \Leftrightarrow \quad f \cdot(\rho(s)(v)=\psi(g) \cdot f(v) \\
& \rho: G \rightarrow G L(r, w) \\
& \psi=G \rightarrow G L(r \cdot v)
\end{aligned}
$$

(4) $U C V$ a subspace is called invariant if $\rho(g)(U) C U \forall g \in G$. any invariant subspace
(5) V is called irreducible if $\vee \cup C V$ must be either $U=\{0\}$ or $U=V$.
(6) $X_{\rho}(g):=$ trace $(\rho(g)$ is called the character function
(7) V is catted completely reducible if $V=\oplus V_{i}$
$\left\{V_{1}\right\}$ are irreducible G-spaces
(8) $S_{i} G \rightarrow G L\left(r_{i}, V_{i}\right) \quad i=12$ tho representation are called equivalent if $\exists f: V_{1} \rightarrow V_{2}$ linear isomorphism \& a G-map.

The main theorem: (1) Two (complex) representations $\rho \& \psi, \beta, G \rightarrow G L\left(r_{1} \mathbb{C}\right)$ are equivalent if $x_{\rho}=x_{\psi}$.
(2) A (complex) representation $\rho: G \rightarrow G L(n V) \quad \begin{cases}G L\left(r_{1} V_{1}\right) & \operatorname{dim}_{\mathbb{C}}\left(V_{1}\right)=r_{1} \\ G L\left(r_{2} V_{2}\right) & \text { din }_{4}\left(V_{2}\right)=r_{2}\end{cases}$ is irreducible iff

$$
\int_{G} X_{\rho}(g) \overline{X_{j}(g)} \begin{gathered}
\text { du (g) } \\
\\
\\
\text { probability Haar measure }
\end{gathered}
$$

Ne shall demote the rest towards the proof of this above result, which gives $\underset{\text { a }}{ }$ complete description of the representation in terms of the character functions
(B) Existence of a bi-invariant n-form

Let $X_{i}^{\prime} \ldots X_{n}$ be left invariant veto fields Such that
$\left.X_{i}\right|_{e}=\frac{\partial}{\partial x_{i}}$ for soy $1-k_{i n}$ canonical coordinate hear e
$\Rightarrow \omega^{L}:=X_{1}^{*} \wedge \cdots \wedge X_{n}^{*}$ is a h-form which in left invariant!
Let Y... Y Y be right invariant vector field such that

$$
\begin{aligned}
& Y_{i} l_{e}=\frac{2}{\partial x^{i}} \quad \Rightarrow \quad Y_{1}^{*} \wedge \cdots \wedge Y_{n}^{*} \text { is a Right invariant } \\
& \text { n-firm o. } G \\
& \omega^{R}(e)=\omega^{L}(e) .
\end{aligned}
$$

Now we show if G is comport $\Rightarrow \quad \omega^{h}$ is ebro left invariant $\omega^{R}(g)=\delta(g) \omega^{L}(g)$ Since ω^{R}. ω^{L} both are n-firms \& $\omega^{R}(g) \neq 0 \quad \omega^{L}(g) \neq 0 \Rightarrow$ the quotient is a velt-defined function $\neq 0$.

$$
\delta(e)=1 \text { Since } \omega^{R}(e)=\omega^{L}(e) \text {. }
$$

We show that $\delta(g h)=\delta(g) \delta(h)$, namely $\delta: G \rightarrow \mathbb{R}^{*}$ is a group homomorphism

Since G is Compact $\Rightarrow \quad \delta(g) \equiv 1$.

The proof follows from the observation

$$
\begin{aligned}
& R_{g} L_{x}=L_{x} R_{g} \quad\left(\begin{array}{l}
\forall \sigma \\
R_{g} L_{x}(\sigma)= \\
\Rightarrow
\end{array}\right. \\
& L_{x}^{*} R_{g}^{*}=R_{g}^{*} L_{x}^{*}
\end{aligned}
$$

Apply it $\omega^{L} \Rightarrow \quad R_{j}^{*} \omega^{L}=L_{x}^{*}\left(R_{g}^{*} \omega^{L}\right)$
$\Rightarrow \quad R_{j}^{*} \omega^{l}$ is also left invariant

$$
\begin{aligned}
& \left.\Rightarrow \quad \operatorname{Rg}^{*} \omega^{L}=c(g) \omega^{L} \quad \text { (Two left invariant inform }\right) \\
& \Rightarrow R_{g}^{*}\left(\delta^{-1}(x g) \omega^{R}(x g)\right)=c(g)\left(\delta^{-1}(x) \omega^{\mathbb{R}}(x)\right) \\
& \Rightarrow \quad \delta^{-1}(x, g)=c(s) \delta^{-1}(x) \\
& \Rightarrow \quad \frac{1}{\delta(x g)}=\frac{\delta(x)}{\left.\frac{((s)}{}\right)} \frac{c(x)}{\delta(x)} \quad x=e \Rightarrow \\
& \frac{1}{\delta(g)}=\frac{t}{c(g)} \Rightarrow \\
& \frac{1}{\delta(x, y)}=\frac{1}{\delta(x) \delta(g)} \Rightarrow \delta(x y)=\delta(x) \delta(y)
\end{aligned}
$$

Namely δ is a group homomorphism.

Corollary: \forall Any real representation $\rho: G \rightarrow G L(r, \mathbb{R})$ \exists an inner product on V which is G-invariant.

$$
G L(r . V) \quad d_{i \sim} V=r
$$

- \forall Any complex representation $P \cdot G \rightarrow G L(r, V)$
\exists a Hermitian product on V which is G-invariant

$$
\langle g v ., g w\rangle=\langle v . w\rangle \quad(\langle \rangle \text { is } g \text { invariant } \Leftrightarrow g \in O(v))
$$

For complex case $(g v, g \omega)=(w, \omega)$ (Hermitian product

$$
\Leftrightarrow \quad g \in U(V) .
$$

Pf Pick any 《 》on V defmi

$$
\begin{aligned}
& \langle v . w\rangle=\int_{G}\langle\langle g v, g w\rangle\rangle d \mu(g) \\
& \langle\sigma v, \sigma \omega\rangle=\int_{G} \underbrace{\langle g v}_{\substack{ \\
\left\langle\left\langle g^{\prime}\right.\right.}} \cdot \sigma g w\rangle\rangle d \mu(g) \\
& =\int_{G}\left\langle\left\langle g^{\prime} v . \quad g^{\prime} w\right\rangle\right\rangle \underbrace{d u\left(\sigma^{-1} g^{\prime}\right)}_{d_{\mu}^{\prime \prime}\left(g^{\prime}\right)}=\langle u . w\rangle
\end{aligned}
$$

The complex case is similar.

The: Any real/Complax representation of G, a compact Lie group, is completely reducible.
Pf: $O(V)$. $U(V)$ element \exists canonical form.
$U(V)$ car be similar to a diagonal matrix
$O(V)$ can be put into 2×2 - block diagonal form.
Eashone is dearly invariant \& irreducible.
(C) The proof of the main result.

Schur's Lemma. Let $V . W$ be two irreducible G-spaces
Let $A: V \rightarrow W$ be a G-map. Then either $A \equiv 0$ or $A \nRightarrow$ an isomorphism
Pf: $\operatorname{ker} A \& I_{m}(A)$ are G-invariant subspaces

$$
\therefore g \cdot(A v)=A(g \cdot v) \in \operatorname{Im}(A)
$$

Pf: If $\rho \& \psi$ are equivalent $\Rightarrow \quad X_{\rho}(g)=X_{\psi}(g)$
is due to $\operatorname{trace}(A)=\operatorname{trace}\left(B^{+} A B\right)$

$$
\begin{aligned}
\rho \& \psi \text { are equivalent } & \Leftrightarrow f(q \cdot v)=g f(v) & \exists f: V \rightarrow W \\
& & \left\{e_{i}\right\},\left\{e_{i}^{*}\right\} \text { base of } V, V^{*} \\
f(\rho(g)) v)=\psi(g) f(v) & & \left\{\tilde{e}_{s}\right\}\left\{\tilde{e}_{s}^{*}\right\}-o f W . W^{*} \\
(\rho(g))\left(e_{i}\right)=e_{j}(f(g))_{j i} & & f\left(e_{i}\right)=\tilde{e}_{s} f_{s i}
\end{aligned}
$$

$$
\begin{aligned}
& f\left(\rho(g) \cdot\left(e_{i}\right)\right)=f\left(e_{j} \cdot f(s)_{j i}\right)=\tilde{e}_{s} \frac{f_{s j} \rho(s)_{j i}}{} \\
& \psi(\rho) f\left(e_{i}\right)=\psi(\rho)\left(e_{t} f_{t i}\right)=\tilde{e}_{s} \psi()_{s t} f_{t i} \\
& \Rightarrow \quad f \rho(g)=\psi(s) \cdot f \Rightarrow \quad \psi(g)=f \cdot \rho(s) f^{-1}
\end{aligned}
$$

(As matrices)
\Rightarrow trace $\psi(\xi)=\operatorname{trace}(\rho(g)) \Rightarrow \quad x_{4}=x_{g}$
To prove the other direction, we consider two ire encible representation中.\& ψ

$$
\begin{aligned}
& \phi(j)\left(e_{i}\right)=e_{j}(\phi(g))_{j i}\left(=e_{j} \phi_{j i}\right) \\
& \psi(s)\left(e_{s}\right)=e_{t}(\psi(s))_{t s}\left(=e_{t} \psi_{t s}\right)
\end{aligned}
$$

$E_{a b}: V \rightarrow W \quad E_{a b}\left(e_{i}\right)= \begin{cases}0 & \text { if } b \neq i \\ \tilde{e}_{a} & \text { if } b=i\end{cases}$
Construct the map $V \rightarrow W$

$$
\begin{aligned}
A_{a b} & =\int_{G} \psi(\xi) \cdot E_{a b} \cdot \phi\left(g^{-1}\right) d u(g) \quad V \rightarrow W \\
& A_{a b}(\phi(\sigma))=\int_{G} \psi(g) \cdot E_{a b} \cdot \phi\left(g^{-1} \sigma^{-1}\right) d u(g) \\
& \left.=\int \psi\left(\sigma^{-1}\right) \psi(\sigma g) E_{a b} \phi\left((\sigma g)^{H}\right) d u c g\right) \\
& =\psi\left(\sigma^{-1}\right) A_{a b} \quad \forall \sigma \in G \Rightarrow A_{a b} \text { in a } G \text {-map }
\end{aligned}
$$

By schur's Lemma \Rightarrow if $\phi \psi \psi$ then $A_{a b} \equiv 0$

Prove: Consider action of $A_{a b}\left(e_{i}\right) \Rightarrow$

$$
\begin{aligned}
& \int_{G} \psi(g) \cdot E_{a b} \cdot \frac{\phi\left(g^{-1}\right)\left(e_{i}\right)}{\prime \prime}, ~\left(e_{i}\right)=e_{j} \bar{\phi}_{i j} . \\
& \Rightarrow A_{a b}\left(e_{i}\right)=\int \psi(g) E_{a b}(g) \Psi_{i j}=\int \delta_{i j} \psi(g)\left(\tilde{e}_{a}\right) \Psi_{i j} . \\
& =\sum \widetilde{e_{s}} \int \psi_{s a} \bar{\phi}_{i j} \delta_{b_{j}} \\
& =\sum \tilde{e}_{s} \int \psi_{s a} \bar{\phi}_{i b}=0 \\
& \Rightarrow \quad \int \psi_{s a} \cdot \overline{\phi_{i b}}=0 \quad(* 1) \\
& (* 1) \Rightarrow \quad \int x_{\psi} \bar{x}_{\phi}=0
\end{aligned}
$$

Case 2 $\psi=\phi \Rightarrow$

$$
\int \phi_{s a} \bar{\phi}_{i s}=\frac{\delta_{s i} \delta_{a b}}{\operatorname{dim} V}
$$

Hence $\int_{G} x_{\phi} \bar{x}_{\phi}=1$
Now let \hat{G} denotes all irreducible representation of G
$\left\{X_{\rho}, \rho \in \hat{G}\right\}$ for set of orthonormal functions of $L^{2}(G, d u)$

$$
\begin{aligned}
& \forall \rho=\sum m\left(\rho, \phi_{i}\right) \phi_{i} \quad m\left(\rho, \phi_{i}\right) \text { are multiplicities } \\
& X_{\rho}=\sum m\left(\rho, \phi_{i}\right) X_{\phi_{i}} \\
& \int X_{\rho} \cdot \bar{X}_{\phi_{j}}=m\left(\rho \phi_{j}\right)
\end{aligned}
$$

Hence if $x_{\rho}=x_{4} \Rightarrow m\left(\rho, \phi_{j}\right)=m\left(\psi_{0} \phi_{j}\right)$

$$
\Rightarrow \quad \rho=\psi
$$

For (4) of main theorem $\Rightarrow \quad \int x_{\rho} \bar{x}_{\rho}=1$

$$
\Rightarrow \quad \sum^{2}\left(\rho \phi_{i}\right)=1 \quad m\left(\rho, \phi_{i}\right) \in \mathbb{Z}^{+}
$$

$\Rightarrow \rho=\phi_{i_{0}}$ for some $i_{0} \Rightarrow \rho \ddot{i}$ irreducible.

