${ }^{1}$ Remarks
(A) σ-system \& abstract root system

If $\Delta \subset \eta$ is the $\frac{\text { root system. We have that }}{\text { from previous definition }}$

$$
\begin{array}{ll}
\forall \alpha, \beta & \in \Delta \\
& \beta+h \alpha \in \Delta \quad \begin{array}{l}
-p \leqslant h \leqslant q \\
p \geqslant 0, q \geqslant 0
\end{array}
\end{array}
$$

with

$$
p-q=n_{\beta \alpha 0}^{p}=2 \frac{B(\beta, \alpha)}{B(\alpha, \alpha)} l \text { may used a }
$$

In particular $\beta-\underbrace{2 \frac{B(\beta, \alpha)}{\beta(\alpha, \alpha)}} \alpha \in \Delta$ wrong order.

$$
\beta-\underbrace{(p-q)} \alpha \in \Delta
$$

Since $\quad-p \leqslant h=q-p \leqslant q$
The observation is if $B(,$,$) is Viewed as an$ inner product $S_{\alpha}(\beta)=\beta-2 \frac{(\beta, \alpha)}{(\alpha, \alpha)} \alpha$ is the reflection w.r.t to $P_{\alpha}:=\left\{\begin{array}{c}x \mid \\ \varepsilon_{\eta_{\mathbb{R}}}\end{array}(x, \alpha)=0\right\}$
The abstract root system only requires Δ is invariant

(iii) $\beta-S_{\alpha}(\beta)$ is an integer multiple of α (Not requiring in Δ)
(B) The weyl (abstract) group $W(\Delta):=$ the group generated by $\left\{S_{\alpha}\right\}$, the reflection above.

For the case $g=k \otimes \mathbb{C} \quad \eta=t \otimes \mathbb{C}$, it can be shown that the two well groups acre the same.
It also satisfies many nice properties:
(i) W(s)acts transitively on the Weyl chambers

$$
W C:=\text { the connected components of } \eta_{\mathbb{R}} \backslash \bigcup_{\alpha \in \Delta} P_{\alpha}
$$

(ii) $\forall H_{0}^{\prime}$ regular, $\exists \sigma \in W(o g)$

$$
\left(\sigma\left(H_{0}^{\prime}\right), \alpha\right)>0 \quad \forall \alpha \in F
$$

(iii) $\forall \alpha \in \Delta, \exists \sigma \in W(\Delta) \quad \sigma(\alpha) \in F$
(iv) $W(\Delta)$ is generencted by $\left\{S_{\alpha}\right\}$ with $\alpha \in F$.
(v) If F^{\prime} is another Fundamental root-set, then $\exists \sigma \in W(y)$

$$
\sigma\left(F^{\prime}\right)=F .
$$

This is mainly proved in Serve (5.10) \& Humphreys. (10.3).
(C) maximal root
(i) It depends the ordering choice.
(ii) ヨ several definitions. I will try to use the pairing with H_{0} - the regular vector in MR.

Def: $\quad \beta$ is called ${ }^{\left(H_{0}\right) \text { - maximal root, if }}\left(\begin{array}{l}(*) \text {-maximal if } \\ \alpha_{m}+\beta\end{array}\right.$
$\left(H_{0}\right) \quad\left(\beta, H_{0}\right) \geqslant\left(\alpha . H_{0}\right) \quad \forall \alpha \in \Delta^{+} \quad(*)$
proposition 4.48. For a simple Lie algebra g
(a) If α_{m} is an element in Δ^{+}with $\begin{gathered}\text { maximal } \\ \text { height } \\ \operatorname{ht}\left(\alpha_{n}\right) \geqslant h t(\beta)\end{gathered} \alpha_{n}$ is $(t)-m a s \in$
(b) $\quad \alpha_{m}=\sum n_{i} \alpha_{i}, \quad \alpha_{i} \in F, n_{i}>0$
(c) If $\beta=\sum m_{i} \alpha_{i} \in \Delta^{+} \quad m_{i} \geqslant 0$

$$
\Rightarrow \quad m_{i} \leqslant n_{i}
$$

In particular, if $\beta \neq \alpha_{m} \quad \beta<\alpha_{m}$
(d) α_{m} is unique maximal root in Δ^{+}
$\left(H_{0}\right)$

If: $\quad h_{t}(\alpha) \doteq \sum n_{i} \quad$ if $\quad \alpha=\sum n_{i} \alpha_{i} \quad \alpha_{i} \in F$
Since $\forall \alpha \in A^{+}$, such an expression exists.
Q it is unique due to $\left\{\alpha_{i}\right\}_{\alpha_{i t F}}$ forms a basis of $\eta_{\mathbb{R}}$
We first show if α_{m} has the maximal height, then α_{m} is maximal satisfies (*).
(a) in the sense that it
If α_{m} has maximal height. $\Rightarrow \quad \alpha_{m}+\alpha_{i} \notin \Delta^{+}$
Hence $(*)$ holds if $\operatorname{ht}(\beta)=1$. We say $(*)$ holds.
Now we prove it by induction on $h t(\beta)$.
Assume it holds for $h t(\beta) \leqslant k$. Namely $\left({ }_{k}\right)$ holds.

Lemma : $\forall \beta_{E_{\Delta^{+}}} h t(\beta)=k+1, \exists \alpha_{j} \in F$ and $\beta^{\prime} \in \Delta^{+}$ such that $\beta=\beta^{\prime}+\alpha_{j}, \quad k \geqslant 1$
Pf: (i) $(\beta, \beta)>0$

$$
\begin{aligned}
& \beta=\sum n_{j} \alpha_{j} \quad \alpha_{j} \in F \\
\Rightarrow & \sum n_{j}\left(\alpha_{j} \beta\right)>0
\end{aligned}
$$

Hence, $\exists j_{0}$ such that $\quad n_{j_{0}}>0 \&\left(\alpha_{j}, \beta\right)>0$
otherwise

$$
\sum n_{j}\left(\alpha_{j}, \beta\right) \leqslant 0
$$

pick such $j_{0} \quad\left(\beta, \alpha_{j 0}\right)>0 \Rightarrow \beta-\alpha_{j 0} \in \Delta$

$$
\begin{aligned}
& \text { But } \quad \beta=\sum n_{j} \alpha_{j}=\sum_{j_{j \neq j}} n_{j} \alpha_{j}+\begin{array}{c}
\left(n_{j}-1\right) \alpha_{j 0} \\
+\alpha_{j_{0}} \\
\beta^{\prime}=\sum_{j \neq j 0} n_{j} \alpha_{j} t\left(n_{\left.j_{0}-1\right)} \alpha_{j 0}\right.
\end{array} \in \Delta \in \Delta^{+} \\
& \underbrace{}_{\square-\alpha_{j 0}} \& \in \Delta^{+}
\end{aligned}
$$

write $\beta=\beta^{\prime}+\alpha$ with $h_{t}\left(\beta^{\prime}\right)=k . \& \alpha \in F$ via the Leman.
$\frac{\text { Recall }}{\alpha \in F} x_{\alpha} \in g_{\alpha}, \quad x_{\beta^{\prime}} \in g_{\beta}$

$$
\alpha+\beta^{\prime}=\beta \neq 0 \Rightarrow\left[\begin{array}{ll}
x_{\alpha} & x_{\beta} 1
\end{array}\right] \neq 0 \rightarrow g_{\beta} \nless
$$

Moreover if $\quad \underbrace{\alpha_{m}+\beta} \in \Delta^{+} \Rightarrow$

$$
\left[x_{m},\left[x_{\alpha}, x_{\beta 1}\right]\right] \neq 0
$$

But $-\quad{ }^{\|}\left[X_{\alpha},\left[X_{\beta^{\prime}}, X_{m}\right]\right]-\left[X_{\beta 1},\left[X_{m}, X_{\alpha}\right]\right]$
$\begin{aligned} & \text { Since } \\ & \left(h_{t}\left(\beta^{\prime}\right)=k\right.\end{aligned} \alpha_{m}+\beta^{\prime} \notin \Delta^{+} \nexists_{0}^{\prime \prime}$

$$
\left.\begin{array}{ll}
\operatorname{since} \\
\left(h \in\left(\beta^{\prime}\right)=k\right.
\end{array} \alpha_{m}+\beta \notin \Delta \Delta^{+}\right)
$$

$\& \quad \underset{h_{t}=1 \text { cure }}{\alpha_{h}+\alpha} \notin \Delta^{+}$
This is a contradiction.
Hence for α_{n} which has maximal $h_{t}\left(\alpha_{n}\right) \Rightarrow(*)$ holds.
Namely $\alpha_{n}+\beta \notin \Delta_{\alpha_{b} \in F} \quad \forall \beta \in \Delta^{+}$. (I.e) α_{m} is (*)-maximal.
(b) $\alpha_{n}=\sum n_{k} \alpha_{n} \quad \alpha_{k} \in F$

$$
\begin{aligned}
& \sum_{1} n_{h} \alpha_{h}=\left\{\alpha_{\epsilon F} \mid n_{i}>0\right\}
\end{aligned}
$$

$$
F=\Delta_{1} \cup \Delta_{2}
$$

$$
\begin{array}{r}
\Delta_{2}:=\left\{\alpha_{j}{ }_{j}{ }^{+\prime} \backslash n_{j}=0\right\} \\
\left(\alpha_{m}, \alpha_{j}\right) \leqslant 0 \quad \forall \alpha_{j} \in \Delta_{2},
\end{array}
$$

Since $\quad\left(\alpha_{m}, \alpha_{j}\right)=\left(\sum_{\alpha_{i} \in 0_{1}} n_{i} \alpha_{i}, \alpha_{j}\right) \leqslant 0$

But $\left(\alpha_{r} \alpha_{j}\right) \geqslant 0$ otherwise $\quad \alpha_{n}+\alpha_{j} \in \Delta^{+}$| $\begin{array}{c}h+\left(\alpha_{n+}+\alpha_{j}\right) \\ \left.=h t \alpha_{n}\right)+1\end{array}$ |
| :---: |
| $\left(\alpha_{1}\right)-h_{0} d_{j}$ |

($\left(*_{1}\right)$-holds is enough) (\nleftarrow)

$$
\begin{array}{ll}
\Rightarrow \quad\left(\alpha_{m} \alpha_{j}\right)=0, & \text { But } \quad\left(\alpha_{i} \alpha_{j}\right) \leqslant 0 \\
n_{i}>0
\end{array}
$$

$$
\begin{aligned}
& \text { This } \Rightarrow \underbrace{D(y) \text { is disconnected, unless }}=A^{(y 2}\left[\begin{array}{c}
g \text { simple eff } \\
D(g) \text { is } \\
\text { connected }
\end{array}\right]
\end{aligned}
$$

Now. we show α_{n} is $_{\frac{a}{a}}$ unique, one which has $h_{t}\left(\alpha_{n}\right)$ is connected If β_{m} is another element in Δ^{+}
such that β_{m} abs has the maximal height. $\left[h t\left(\beta_{n}\right)=h_{t}\left(\alpha_{n}\right)\right]$
If (i) $\left(\alpha_{n} \beta_{m}\right)_{\&<}>\underset{\alpha_{n} \neq \beta_{m}}{0 \Rightarrow}, \quad \alpha_{m}-\beta_{n} \in \mathbb{A}$
\Rightarrow either $\alpha_{n}-\beta_{2} \overline{\in \Delta^{+}}$or $\beta_{n}-\alpha_{n} \in \Delta^{+}$

$$
\begin{equation*}
\Rightarrow \quad \alpha_{m}=\beta_{n}+\left(\alpha_{n}-\beta_{n}\right) \in \Delta^{+} \quad \beta_{n}=\alpha_{n}+\left(\beta_{2}-\alpha_{n}\right) \tag{+}
\end{equation*}
$$

All contradicts to (*). [Maximal in ht \Rightarrow maximal in $(*)]$
(ii) if $\left(\alpha_{m}, \beta_{2}\right)=0 \Rightarrow \quad \sum_{j}\left(\alpha_{j}, \beta_{i}\right)=0$

But $\left(\alpha_{j}, \beta_{n}\right) \geqslant 0 \Rightarrow\left(\alpha_{j}, \beta_{n}\right)=0 \Rightarrow \beta_{n}=0$.

(ii) $\quad\left(\alpha_{n} \beta_{1}\right)<0 \Rightarrow \alpha_{n}+\beta \in \Delta \quad$ maximal height.
(iii) If $\left(\alpha_{n}, \beta_{n}\right)<0 \Rightarrow \underbrace{}_{\text {of }} \alpha_{n}+\beta_{n} \in \Delta_{\Rightarrow} \alpha_{n}+\beta_{n} \in \Delta^{+}$
\Rightarrow neither of there is maximal height.
The contradiction forces $\quad \alpha_{m}=\beta_{m}$.
(c) If $\beta \neq \alpha_{m} \quad \beta \in \Delta^{+}$.
(b) implies (c) holds at $h t(\beta)=\operatorname{ht}\left(\alpha_{m}\right)$
the uniqueness part
(c) holds \& Also if $h t(\beta)=1$. it holds.

Now if $\quad h_{t}(\beta)=i . \quad \& \int_{\text {(c) holds }}^{\text {for }} h_{t}(\beta)>i \quad$ clair: $\exists \alpha_{i} \in F$
$\beta+\alpha_{i} \in \Delta^{+}$, Otherwise we have β satisfies $\left(*_{1}\right)$.

Also $\quad \beta=\alpha_{m} \quad\left(b_{y}\right.$ (b) argument, $\left.\quad \begin{array}{ll}\alpha_{m} & \leftarrow \beta \\ \beta_{m} \leftarrow \alpha_{m}\end{array}\right)$
Hence $\beta^{\prime}=\beta+\alpha_{i}$ has $\operatorname{ht}\left(\beta^{\prime}\right)=i+1$.
\Rightarrow (c) holds for β^{\prime} (by induction assumption)
\Rightarrow It also holds for β Namely misti.
Corollary of (c) is

$$
\left(\alpha_{m}, H_{0}\right) \geqslant\left(\beta, H_{0}\right) \quad \text { Since }\left(\alpha_{i}, H_{0}\right)>0 \text {. }
$$

Moreover if $\beta \neq \alpha_{n} \Rightarrow\left(\alpha_{n}, H_{0}\right)>\left(\beta, H_{0}\right)$.
Namely α_{m} is maximal interns of $h_{0}(H):=\left(H, H_{0}\right)$
(d) Follows by the construction. \& (c), (b) (c).

2 Weight, Weight spaces, the maximal Weight. Now we consider representation of simple hie algebras. $\varphi_{:} G \rightarrow G l(V) \quad$ linear mope preserves the [,]. We consider irreducible representations.

Defy: $\mu \in \eta^{*}$ is called a weight if

$$
V_{\mu}==\{v \in V \mid \quad H \cdot v=\mu(H) v, \quad \forall H \in \eta\}
$$

Here $H . v$ means $\varphi(H)(u)$.
The representation allows us to view V as a g-module.

$$
(X . Y . v)=X .(Y . v)=\varphi(x)(\varphi(Y)(v))
$$

The vector space V_{M} is called the weight space.
If g is the Lie algebra of a compact hie group.
$\Rightarrow \exists$ metric on V such that $\widetilde{\varphi}(g) \in U(V)$
\Rightarrow Any ore can be diagonized.
Same applies to $\varphi(x) . \quad x \in g$. since $\varphi(x) \in u(n)$
Our discussions on root \& root spaces works.
In particular,
Lemma: $\forall \alpha \in \Delta . \quad X_{\alpha} \in g_{\alpha}$ \& μ a weight

$$
X_{\alpha} \cdot X_{u} \subset V_{\mu+\alpha}
$$

Pf.

$$
H \cdot \quad \begin{aligned}
Y_{\alpha} \cdot v & =X_{\alpha} \cdot \underbrace{H}_{i} v \\
& =\mu(H) X_{\alpha,} v \\
& =(\mu(H)+\alpha(H)) \underbrace{H,}_{\alpha(H)}, X_{\alpha}, v
\end{aligned}
$$

Def. $\mu_{2} \leqslant \mu_{2}$ if $\mu_{1}\left(H_{0}\right) \leqslant \mu_{2}\left(H_{0}\right)$

$$
\in \eta_{R}^{*}
$$

An order in the weight system.
In order to make sense out of it we need the following
Proposition: (a) V is the direct sum of weight spaces
(b) If μ in u weight, $\mu\left(\tau_{\alpha}\right) \in \mathbb{Z} \quad \forall \alpha \in \Delta$.

$$
\tau_{\alpha}=\frac{2 H_{\alpha}}{\left(H_{\alpha}, H_{\alpha}\right)} \Rightarrow u\left(\eta_{R}\right) \text { is real. }
$$

Pf (a) By the eigen-space decomposition for a family of Commutative diagonizable (Semi-simple) operators.
(b) Observe that $\tau_{\alpha} \quad X_{\alpha} \quad X_{-\alpha}$ satisfies

$$
\begin{aligned}
& {\left[\begin{array}{ll}
X_{\alpha}, & X_{-\alpha}
\end{array}\right]=\tau_{\alpha}} \\
& {\left[\begin{array}{ll}
\tau_{\alpha} & X_{\alpha}
\end{array}\right]=\alpha\left(\tau_{\alpha}\right) X_{\alpha}=2\left(H_{\alpha} \tau_{\alpha}\right) X_{\alpha}=2 X_{\alpha}} \\
& {\left[\begin{array}{ll}
\tau_{-} & X_{-\alpha}
\end{array}\right)=-\alpha\left(\tau_{\alpha}\right) X_{-\alpha}=-2 X_{-\alpha}}
\end{aligned}
$$

Hence $\operatorname{span}\left\{\tau_{\alpha}, X_{\alpha}, X_{-\alpha}\right\} \quad$ generates a $\operatorname{sil}(2, \mathbb{C})$.
The representation $g: g \rightarrow g l(V)$
restrict to $\left.\quad g\right|_{\text {sll2 } \mathbb{C})} \rightarrow g e(V)$ is a representation of $\mu\left(\tau_{\alpha}\right)$ then are all integers
Let G be a compact Lie group. Y: $G \rightarrow G C(V)$ is a representation?
T be a maximum torus. $2 \pi A(\sigma(\delta), H)$
Theorem: $\quad\left(\underset{i}{ } Q(r) \doteq \sum_{\sigma \in W} \operatorname{sign}(\sigma) e^{2 \pi} \neq 0\right.$ for generic $H \in t$.

$$
\delta=\frac{1}{2} \sum_{\alpha_{i} \in \Delta^{+}} \alpha_{i}
$$

(ii)

$$
\begin{equation*}
x_{\varphi}\left(E_{\operatorname{xp}} H\right)=\frac{\sum_{\sigma \in \omega} \operatorname{sign}(\sigma) e^{2 \pi \cdot}\left(\sigma \left(\Lambda_{\varphi}\right.\right.}{} \alpha_{\alpha_{i}} \tag{w}
\end{equation*}
$$

Λ_{ρ} is the highest weight of φ

$$
\operatorname{Exp}(H) \in \prod_{\uparrow} C G
$$ the maximal torus.

(iii) Two complex reps. $\varphi \& \psi$ of G
irreducible representations
are equivalent iff $\quad \lambda_{\varphi}=\Lambda_{\psi}$.
iv $\operatorname{din} \varphi=\prod_{\alpha \in \Delta^{+}} \frac{\left(\Lambda_{\rho}+\delta, \alpha\right)}{(\delta, \alpha)}$
\uparrow
Namely the dimension of the representation is determined by Λ_{ρ}, the maximal/highest weight.

Question: Is there any relation between Ley's formula (w) \& Hirezelruch-Riemonn - Roch?
(3)
E.g.

$\alpha+\beta$ is the one with the highest weight

$$
F_{C_{2}}=\{\alpha,-(\alpha+\beta)\}
$$

$-\beta=\alpha+(-(\alpha+\beta))$ is the one with the highest weight

An important property for δ.
(a) $S_{\alpha}: \Delta^{+} \backslash\{\alpha\} \longrightarrow \Delta^{+} \backslash\{\alpha\}$.

Pf: $\quad S_{\alpha}(\beta)=\beta-2 \frac{(\alpha, \beta)}{(\alpha, \alpha)} \alpha$
Since $\forall \beta \in \Delta^{+\backslash\{\alpha\}} \quad \beta=\sum n_{j} \alpha_{j} \quad \begin{aligned} & \text { Some } \alpha_{j} \neq \alpha \\ & n_{j}>0\end{aligned}$
otherwise β is a multiple of $\alpha \quad \beta \in \Delta^{+} \Rightarrow \beta=\alpha$.
But $S_{\alpha}(\beta)=\left(\sum n_{j}^{\prime} \alpha_{j}\right)$ expression still holds $\&$ either $n_{j} \geqslant 0 \quad \forall j$ or $n_{j} \leqslant 0 \quad \forall j$ But the reflection clearly does not affect
the coefficient n_{j}. since it could only affect multiples of α.
(b) $\int_{\alpha_{i}}(\delta)=\delta-\alpha_{i} \quad \alpha_{i} \in F$

Pf: $\quad j=\frac{1}{2} \sum_{\alpha \in \Delta^{+}} \alpha=\frac{1}{2} \sum_{\alpha \in \Delta^{+}} \alpha+\frac{1}{2} \alpha_{i}$

$$
S_{\alpha_{i}}(\delta)=\frac{1}{2} \sum_{\substack{\alpha \in \Delta^{+} \\ \alpha \neq \alpha_{i}}} \alpha-\frac{1}{2} \alpha_{i}=\frac{1}{2} \delta-\alpha_{i}
$$

(c) $\frac{2\left(\alpha_{i} \delta\right)}{\left(\alpha_{i}, \alpha_{i}\right)}=1$

Pf: $\quad \int_{\alpha_{i}}(\delta)=\delta-\frac{2\left(\delta, \alpha_{i}\right)}{\left(\alpha_{i} \alpha_{i}\right)} \alpha_{i}=\delta-\alpha_{i}$

$$
\Rightarrow \quad \frac{2\left(\delta, \alpha_{i}\right)}{\left(\alpha_{i}, \alpha_{i}\right)}=1 \quad \forall \alpha_{i} \in F \text {. }
$$

(d) Genera formula:
(*) $\sum_{\sigma \in W} \operatorname{sign} \sigma e^{2 \pi F(\sigma(\delta), H)}=\prod_{\alpha \in \Delta^{+}}\left(e^{\pi F(\alpha, H)}-e^{-\pi F(\alpha, H)}\right)$
Then $\left.\operatorname{sish}^{2 \pi F\left(\sigma\left(\Lambda_{\varphi} \delta \delta\right),-t \delta\right)} \sum^{2 \pi F\left(\sigma\left(\frac{t}{l} \delta\right)\right.}, \Lambda_{\varphi}+\delta\right)$
$=\sum_{\sigma \in W} \operatorname{sign} \sigma e^{2 \pi}$

$$
=\prod_{\alpha \in \Delta^{+}}\left(e^{\overline{F F}\left(\alpha,\left(\Lambda_{\varphi}+\delta\right) t\right)}-e^{-\pi F^{F}\left(\alpha,\left(\Lambda_{\varphi}+\delta\right) t\right)}\right)
$$

Hence:

$$
=\prod_{\alpha \in \Delta^{+1}} \frac{\left(\Lambda_{q}+\delta, \alpha\right)}{(\delta, \alpha)}
$$

This pores (iv) of theorem.
One can consult Hsiang's book for a proof of ** and the proof of (i) \& (ii) of the theorem
(iii) is an easy consequence of the character theory we covered before \& the Cartan-Wegl. Hops theorem.

