(1)

Examples:
(a) $u(n):=\left\{\begin{array}{l|l}a & a+a^{*}=0, \\ \left.a^{*}:=\overline{a^{+}}\right\}\end{array}\right.$

$$
s u(n):=\{a \in u(n), \quad \operatorname{tr}(a)=0\}
$$

It is easy to see the Complexification of $\operatorname{sel}(n, \mathbb{R})$ is $s l(n, \mathbb{C})$
$\operatorname{Span}\{\lambda a$, with $\lambda \in \mathbb{C}, a \in S l(n, \mathbb{R})\}$ clearly $=S l(n, \mathbb{C})$
the Standard basis of $S l(n, \mathbb{R})$ is $\quad e_{i j} \quad i \neq j$
\& $e_{i i}-e_{i+1} i+1 \quad 1 \leqslant i s n-1$
They Spans $\operatorname{sln}(\mathbb{C})$ over \mathbb{C}.
But the complexification of $s u(n)$ is also $s \ln , \mathbb{C})$.
list by the dimension counting $\quad \lim _{\mathbb{R}}(\operatorname{sun}(n))=n^{2}-1$
Complexification makes it $\quad \operatorname{din}_{\mathbb{C}}=n^{2}-1 \quad\left(=\operatorname{dim}_{\mathbb{C}}(s l(n C))\right)$
Moreover $\forall b \in \operatorname{sln}(\mathbb{C})$

$$
\begin{aligned}
& \text { drover } \forall b \in s l(\ln \mathbb{C}) \\
& b=\frac{b+b^{*}}{2}+\frac{b-b^{*}}{2}, i=a+\cdots \cdots \\
& \text { Let } a=\frac{b-b^{*}}{2}, a \in \operatorname{sun}(n)
\end{aligned}
$$

$$
\left.\begin{array}{rll}
& \tilde{a}=\frac{i\left(b+b^{*}\right)}{2} \\
& \tilde{a}+\tilde{a}^{*}=\frac{i b+i b^{*}-i\left(b^{*}+b\right)}{2}=0 & \operatorname{tr}(\tilde{a})=0
\end{array}\right\} \Rightarrow \tilde{a} \in \operatorname{su}(n) .
$$

Namely both $S l(n, \mathbb{R})$, - real Lie algebra, $S L(n \mathbb{R})$

Lie group
[I mode mistake when I mentioned 'hiking', which was on Dixon 1 lake about a year ago] $U(n)$ - conplexifies $g l(n, \mathbb{C})$, as $g l(n, \mathbb{R})$.
$d: \mathbb{N}^{(}(\hat{)})=n^{2} \quad$ one needs this to understant curvature on Complex manifolds
(b) $O(p, I) \quad p+I=n$ presences the form $B(x, x)=-\sum_{i=1}^{p}\left|x_{i}\right|^{2}+\sum_{j=p+1}^{n}\left|x_{j}\right|^{2}$
$\psi_{p}=\left[\begin{array}{cc}-I_{p} & 0 \\ 0 & I_{q}\end{array}\right]$ is the matrix form $\quad B(x, y)=x^{t} Q_{p} y$.
$x \in o(p, s)$ if $\quad B(x, y)+B(x, x y)=0 \quad \forall x, y \in \mathbb{R}^{n}$

$$
\Rightarrow \quad x^{t}\left(X^{t} Q_{p}+Q_{p} Y\right) y=0
$$

Namely if $X=\left(\begin{array}{cc}A, & B \\ C & D\end{array}\right) \in O(p, \zeta) \Rightarrow \begin{aligned} & A, \in \sigma(p) \\ & D \in \sigma(Y)\end{aligned}$

$$
B^{t}=C
$$

Namely it hes the form $\quad\left(\begin{array}{cc}A & B \\ B^{t} & D\end{array}\right) \quad \begin{aligned} & A \in O(p) \\ & D \in O(S)\end{aligned}$
Then $\quad O(P . S) \otimes \mathbb{C}=\left\{\left(\begin{array}{ll}A & B \\ B^{t} & D\end{array}\right), \begin{array}{ll}A+A^{t}=0 & A, B, \\ D+D^{t}=0 & D \text { complex }\end{array}\right\}$
$\varphi_{J}: \quad X \rightarrow J_{p} \times J_{p}^{-1} \quad J_{p}=\left(\begin{array}{cc}F I_{p} & 0 \\ 0 & I_{s}\end{array}\right)$
$\Rightarrow \phi_{J}$ clearly is a Lie algebra isomorphism

$$
\phi([x, y])=[\phi(x), \phi(y)]
$$

On the other hand, $\quad \phi\left(\begin{array}{ll}A & B \\ B^{t} & D\end{array}\right)=\left(\begin{array}{cc}F I & 0 \\ 0 & I\end{array}\right)\left(\begin{array}{cc}A & B \\ B^{t} & D\end{array}\right)\left(\begin{array}{cc}-H I & 0 \\ 0 & I\end{array}\right)$

$$
=\left(\begin{array}{cc}
\overline{A A} & F B \\
B^{t} & D
\end{array}\right)\left(\begin{array}{cc}
-\overrightarrow{H I} & 0 \\
0 & I
\end{array}\right)=\left(\begin{array}{cc}
A & F B \\
-F B^{t} & D
\end{array}\right)
$$

Namely $\phi(X)+\phi(x)^{t}=0 \Leftrightarrow \phi(x) \in O(n, \mathbb{C})$.
Summarizing $O\left(p, \underline{s} \quad 0 \leqslant p<\left[\frac{n}{2}\right]+1\right.$ all complexity into $O(n, \mathbb{C})$.
Only one of them, namely $O(n)$ is compact.
(2) A genera result
ziller, 1.39: If g is complex Lie algeira. $\left(g_{\mathbb{R}}\right)_{\mathbb{C}}=g \oplus(\mathbb{g}$ Not as in e ie l gat gu e vet.
$J((u, v))=(-v, u) \quad$ the meaning is $\quad(u, v) \approx g \notin g$ specs $u+j v \quad$ as vectropoce.
But $j(u+j v)=-v+j u \quad$ Hence multiply j means $\begin{gathered}u+j v \\ -v+j u\end{gathered} \rightarrow$
The Lie algebra structure on $g \in g$ is defined to be

$$
\begin{equation*}
[(u, v),(x, y)]=([u, x]-(v, y], \quad[u, y]+[u, x]) \tag{*}
\end{equation*}
$$

That is the Lie algehre " $\mathcal{G} \oplus \mathcal{G}$, when we complexify $\mathcal{G}_{\mathbb{R}}$
The original multiplication is I $\quad I((u, u))=\left(I_{n}, I_{v}\right)$.

$$
\begin{aligned}
& (J, I)(u, v)=(-I v, I n)=I \cdot J(u u) \\
& L=J \cdot I \quad L^{2}=i d . \\
& f_{-}(u) \doteqdot \frac{1}{2}(u,-I u) \\
& \quad f_{+}(u) \doteqdot \frac{1}{2}(u, I n) .
\end{aligned}
$$

$$
\begin{aligned}
& (u, v)=(\frac{u-I v}{2} \underbrace{\left.\frac{I u-I(I v)}{2}\right)+\left(\frac{u+I v}{2},-I\left(\frac{u+I u}{2}\right)\right)} \\
& =(w, I w)+\left(w^{\prime},-I w^{\prime}\right) \quad w^{\prime}=\frac{u+I u}{2} \\
& \omega=\frac{U-I n}{2}{ }^{*} V_{x} \quad E_{L} \\
& \Rightarrow g \oplus\}=V_{+} \oplus V_{-} \\
& L \cdot(w, I w)=J(I w,-\omega)=(w, I \omega) \\
& L(\omega,-I \omega)=J(I u, \omega)=-(\omega,-I \omega) \\
& \left(\begin{array}{c}
V_{ \pm} \text {areideals } \\
\text { as explained in, } \\
\text { miller }
\end{array}\right.
\end{aligned}
$$

$f_{-} y \rightarrow V_{-}$is a Lie algebra isomorphism since

$$
\begin{aligned}
f_{-}([u, v]) & =\left(\frac{1}{2}[u, v], \frac{I([u r])}{2}\right) \\
{\left[f_{-}(u), f_{-}(v)\right] } & =\left[\frac{1}{2}(u,-I u), \frac{1}{2}(v,-I v)\right] \\
= & \left(\frac{1}{4}([u) v]+[u v]\right), \quad \frac{1}{4}([u,-I v]+[-I u, v]) \\
& -\frac{1}{2} I^{\prime \prime}([u, v])
\end{aligned}
$$

Moreover

$$
\begin{aligned}
f_{-}(I u)= & \frac{1}{2}(I u,-I(I n))=\frac{1}{2}(I u, u) \\
= & J \cdot f_{-}(u)
\end{aligned}
$$

$\Rightarrow f_{-}$is a complex Lie algebra isomorphism
Similarly $f_{+}: \bar{g} \longrightarrow V_{+}$is an Lie algebra isomorphism.
(3) Realification If g is a complex Lie algebra

We may forget the multiplication of i to treat it as a red lie algebra. (g)

If $e_{1}, \ldots e_{r}$ are the basis of g
$\left\{e_{1} \ldots e_{r}, i e_{1}, \ldots i e_{r}\right\}$ forms a basis of (g)

$$
\begin{aligned}
& {\left[\begin{array}{ll}
e_{k_{k}} & i e_{j}
\end{array}\right]=i\left[\begin{array}{ll}
e_{k} & e_{j}
\end{array}\right]=\left[\begin{array}{ll}
i e_{k} & e_{j}
\end{array}\right] .} \\
& {\left[\begin{array}{ll}
i e_{k} & i e_{j}
\end{array}\right]=-\left[\begin{array}{ll}
e_{k} & e_{j}
\end{array}\right]}
\end{aligned}
$$

Now if g_{c} is the cumplexification of $g \&\left(S_{c}\right)$ is its realification
$\left(S_{c}\right)=5 \oplus_{1} \delta_{\text {again }}$ with ivector sesu. Lie algebre breckect

$$
\begin{aligned}
& \left.f_{c}\right)=S \Theta \delta_{\text {agai- }}{ }^{4} \text { vector seau. } \\
& {[(u, v),(x, y)]=([u x]-[v, y],[u y]+[v, x])}
\end{aligned}
$$

u+ir b.r. $x, y \in q$

$$
\begin{array}{rlrl}
I_{+} g \longrightarrow\left(g_{c}\right) & I_{+}([u, v]) & =([u, v], 0) \\
n \rightarrow(u, 0) & & {\left[I_{t}(u), I_{+}(v)\right]} & =[(u, 0),(v, 0)] \\
& & =([u, v], 0)
\end{array}
$$

$$
\psi:(u, v) \longrightarrow(u,-v)
$$

ψ is an isomorphish

$$
\begin{gathered}
\psi([(u, v),(x y)])=[\psi(u, v), \psi(x, y)] \\
([u, x]-[v y],-([u y]+[v, x])) \stackrel{\leqslant}{\Leftrightarrow}(u,-u),(x, y)]
\end{gathered}
$$

Nomely $\psi: \quad\left(g_{c}\right) \rightarrow\left(g_{c}\right)$ is a Lie algeste iscmorphism
$I_{+}(y) \subset\left(y_{c}\right)$ is the one containing $<11 z \quad \psi(z)=z$.
Now we prove the following.
Let 12 be the maximum solvable ideal of g, a real Lie-ajebse then R_{c} is the maximum solvable ideal of gc . $\operatorname{In} f_{\text {art }}(\operatorname{Rad}(g))_{e}=\operatorname{Re}\left(\mathrm{S}_{c}\right)$
PF: Let T be the maximum solvable ideal of g_{c}

$$
\psi(T):=\{u-i v \mid u+i v \in T\}
$$

(a) $\psi(T)$
an ideal.

$$
\begin{aligned}
& {[u-i v, x+i y] } \\
= & ([u, x]+[u, y])+i((u, y]-[v x]) ; \\
= & {[u-i v, x+i(-y)] } \\
= & {[u, x]-[v,(-y)]-i([u,(-y)]+[v, x]) } \\
= & 4\left(\left[u+i v, \frac{x+i(-y)])}{\in}\right)\right.
\end{aligned}
$$

Namely $\quad[u-i v, x+i y] \in \psi(T) \quad H e n c e ~ i t ~ i s ~ a n ~ i d e a l . ~$
(b)

Moreover if T is solvable $\Rightarrow \psi(T)$ is solucsle.

$$
\begin{aligned}
& {[u+i v, x+i y] }=([u x]-[v, u]+i([u, y]+[v, x])) \\
& {[u-i v, x-i y]=}([u x]-[v, u]-i([u, y]+[u, x])) \\
& \Longrightarrow \quad[\psi(T), \psi(T)]=\psi([T, T]) \quad(\psi(T))_{1}=\psi(T)
\end{aligned}
$$

Here if T is solvable c $\Rightarrow \psi(T)$ is.
By the noximality $\cdot f T \Rightarrow \quad T=\psi(T)$.
$\Rightarrow T=S_{C}$ for some S [This need some calculations].
It canke shown that S is an ided in 9 . T is solvable iff S is solvable $\Rightarrow S \subset R$.
But $R C S$ as well since R_{c} is a solvable ided of g_{c}

$$
R_{c} c T=S_{c} \quad T h i s \text { shows } \quad T=R_{c}
$$

The: g is semi-sinple, ifs g_{c} in semi-simple. $\quad R(g)=0 \Leftrightarrow R\left(q_{c}\right)=0$ [In terms of the $N_{0} \underset{\substack{\text { mexinad solvable ide cts.] } \\ \text { Recto }}}{\text { M }}$
(4) The killing form.

Let B be the Killing form of g, a real Lie algebra $B(\cdot, \cdot)$ extends bilinearly to g_{c}
Namely $\quad B(z, w)=B(x+i y, u+i v) \doteqdot[B(x, u)-B(y, u)]$

$$
\begin{aligned}
& z=x+i y \\
& w=4+i v \\
& w e \text { denote it } b_{y} B_{c}
\end{aligned} \quad+i(B(x, n)+B(y, u))
$$

claim: $\operatorname{Rad}(B)_{c}=\operatorname{Rad}\left(B_{c}\right)$.
Pf: If $z \in \operatorname{Rod}\left(B_{c}\right):=\left\{z \mid B_{c}(z, u)=0 . \forall u \in g_{0}\right\}$
then

$$
\begin{array}{ll}
& B_{c}(x+i y, u)=0 \quad \forall u \in g \\
\Rightarrow \quad & B(x, u)+i B(y, u)=0 \Rightarrow y, x \in \operatorname{Rod}(B) \\
\Rightarrow & x+i y \in(\operatorname{Rad}(B))_{c}
\end{array}
$$

Namely $\quad \operatorname{Rad}\left(B_{c}\right) \subset(\operatorname{Rad}(B))_{c}$.
On the other had. \forall univ $\in \operatorname{Rud}(B)_{c}$

$$
B(u+i v, x+i y)=0 \quad \text { clearly } \Rightarrow \quad u+i v \in \operatorname{Rad}\left(B_{c}\right)
$$

Combining Thin\& the above we have
Corollary: Cartaris criterion holds for g. - real. Lie algebra.
Namely g is semi-simple iff $\quad \operatorname{Rud}_{\mathrm{Le}}(B)=\{0\}$.
Pf. If $\operatorname{Rad}(B)=\{0\} \Rightarrow \operatorname{Rad}\left(B_{c}\right)=\{0\} \Rightarrow G_{c}$ is semi-sinpl $\Rightarrow \quad j$ is

If g is Semi-sinple $\Rightarrow g_{c}$ is $\Rightarrow \operatorname{Rad}\left(B_{c}\right)=\{0\} \Rightarrow \operatorname{Rad}(B)=\{3\}$

Example: on $\operatorname{sel}(\mathrm{n}, \mathbb{C})$.

$$
B(X, Y)=2 n \operatorname{tr}(X Y)
$$

Even on self, \mathbb{R}) B is Not positive/negatic definite.
But it is non-degenercte!
$S L(n, \mathbb{C})$ - complex Lie group with Lie algebra shin ©)
S| top
$S U(n) \times \mathbb{R}^{n^{2}-1}$ which is NOT compact
Similarly $S L(n, \mathbb{R})$ is NOT compact $\} \quad$ on $\operatorname{sl}(n \mathbb{R})$ since top $S 1$

$$
\begin{aligned}
& S 1 \\
& S O(n) \times \mathbb{R}^{\frac{n(n+1)}{2}-1}
\end{aligned}
$$

B is non-degenerate
But - B is NOT positive definite Check on
self $2, a)$.
$S l(n, \mathbb{C})$ is semi-simple
$\operatorname{su}(n) \quad B(X, Y)=2 n \operatorname{tr}(X, Y) \Rightarrow B(X, X)=-2 n \operatorname{tr}\left(X, X^{*}\right)<0$

$$
x+x^{*}=0 \quad \Rightarrow \quad \text { sunn) is simple. }
$$

$u(n)$ complexity into glen ($\mathbb{C})-x=\bar{A} i d \in U(n)$
which is not semi-simple $\quad a d_{x} \equiv 0$

