(I) [CH Locally Compact Hansdorff. 11 VICX IN_ Compart & No JX. Nx is called a compact neighborhood. Hausdorff $\forall x. y \in X. \exists U_x. V_y \qquad U_x n V_y = A$ E.g. IR". Any Smooth manifold. X = R $\mathcal{O} = \{ R \mid \{x_1, \dots, x_k\} \}$ Non-examples: 1 Cofinite topology Not Hausdorff. (X. 11.11) - An infinite dimensional hormed spece. Not locally compart. Reason on LCH. I good functions such that one can obtain good measures - Radon measures. Two theorems. X a LCH space (A) Urysohn's Lemma: YKCUCX. Kcompact Wopen $\exists f \in C(X, [0, 1]), \quad \exists I_{k} = I, \qquad \text{Supp } f \in \overline{V_{k}} \subset \overline{V_{k}} \subset U,$ { ++0} B. Partition of the Unity. K Compet. UU; a cover of K. Uj open. $\exists \{g_i\}$ Supp 9; is compart in U; $g_j \in C(X, [0, 1])$ & Žij = 1 09 K.

These two results are very useful.

(2) Basics on Compact subsets of X. (LCH)
Lemme 1: If FC X is compact & X is Hansdorff

$$x \in F \Rightarrow \exists U, V \quad x \in U.$$
 FCV $U \cap V = 4$
PS: $\forall y \in F \exists V_y \cup_y \quad x \in U_y \quad y \in V_y \cup_y \cap_y = 7 \exists FC \cup V_y$.
 $\exists FC \cup V_y = 7 \exists FC \cup V_y$.
Then let $V = \bigcup_{j=1}^{n} V_{ij}$ $U = \bigcap_{j=1}^{n} U_{jj}$.
 $\Rightarrow U \cap V = 4$ & $x \in U$.
Lemmel X cs in L-1. FCX is compart \Rightarrow F is closed.
 $PS: \forall y \in F \Rightarrow \exists \bigcup_y \cap F = 4 \Rightarrow \bigcup_y = F^c$
 $\forall efc$ is open.
Trividly, any closed subset σ_y^c a compact space is compart.
Lemmel X is LCH, $U \subset X$ is open $X \in U \exists a$ compact
 $Neighborhoul N \circ f x$ such that $N \in U$.
 $PF: \exists F compact x \in F$. F is closed by Lemmel X
 $Let U_i = \bigcup_i F \Rightarrow \bigcup_i C F$
Hence \overline{U}_i is compact.
 $[If \overline{U}_i \subset U$ we are done].
Now, we consider $x \in \overline{U}_i$ & $\overline{U}_i (= \overline{U}_i) \subset \overline{U}_i$
as two cubset of \overline{U}_i .
Note they are closed, hence comparts.
 $\Rightarrow \exists V & W$ open $V \cap W = \Phi$ $x \in V & T \overline{U}_i F W$.

$$V \subset \overline{U}_{i}, W \subset \overline{U}_{i} \quad open (as i = \overline{U}_{i}). \qquad (\nabla \subset \overline{U}_{i}).$$

$$First V is LCH, V Can be chosen such that \overline{V} is compart.

$$\overline{V} \subset W^{c} \text{ in } \overline{U}_{i} \implies \overline{V} \subset U_{i} \quad sinte \quad \partial \overline{U}_{i} \cap \overline{V} = d$$
Let $N = \overline{V}_{i}$ we have the result.
Lemmet X is LCH, $K \subset U \subset X$ U is open K is
compart.
Easy conserves of Lemme 3.
If $V x \in K \exists N_{X} \quad x \in N_{X} \quad N_{X} \quad Conport \subset U$.

$$\Rightarrow \exists N_{X}, K \subset \bigcup_{j=1}^{2} N_{X_{j}}.$$
But $\bigcup_{j=1}^{2} N_{X_{j}}.$ is still closed. & compart.

$$\subseteq U_{i}$$
(3) The proof of Thus (A & B).
For (A) we need the Standard Ungsohn Lemmes;
Let X he a normal space $\exists f \in C(X, [c, 1])$
 $\forall A, B \ Closed \quad AnB = 4$

$$If X is compart \& Heardorff. \implies Nermal$$
Sine $\frac{V}{T} \in A \quad \exists x \in U_{X} \quad V_{X} \supset B$.

$$\int V x \in K \quad \exists X \in U_{X} \quad V_{X} \supset B$$
.

$$\int V x \in X \quad A \quad B \subset U_{X} \quad B \subset V_{X} = 4$$
.

$$\int V x \in X \quad A \quad B \subset V_{X} = 5$$
.

$$\int V x \in X \quad A \quad B \subset V_{X} = 5$$
.

$$\int V x \in X \quad A \quad B \subset V_{X} = 5$$
.

$$\int V x \in A \quad \exists x \in U_{X} \quad V_{X} \supset B$$
.

$$\int V x \in X \quad A \quad B \subset U_{X} = 4$$
.

$$\int X \quad C \quad C \subseteq U_{X} \quad C \quad C \in V_{X} = 5$$
.

$$\int V x = 0$$
.

$$\int V x \in X \quad C \quad C \quad C \quad C \in V_{X} = 5$$
.

$$\int V x = 0$$
.

$$\int$$$$

But X is LCH. We need a Separate compact set.
By Lemma 4.
$$\exists V.$$
 $K \subset V \subset \overline{V} \subset U$ \overline{V} is compact.
Now we apply Urysolu Lemma to \overline{V} . $A=K$, $B=3\overline{V}$
 $\Rightarrow \exists \quad f \in C(\overline{V}, [0,\overline{n}])$ such that $f|_{\overline{K}}=1$. $f|_{\partial\overline{V}}=0$
Then define: $For = \begin{cases} f(x) & x \in \overline{V} \\ 0 & x \in \overline{V} \end{cases}$
 $F(E) = \begin{cases} f^{-1}(E) & Closed & if E = \overline{D} \\ V^{C}U & f^{-1}(E) & if 0 \in E \end{cases}$
 $F(x)=0 \quad On \overline{V} \end{cases}$
 $F(x)=0 \quad On \overline{V} \end{cases}$
 $F(x)=0 \quad On \overline{V} \end{cases}$

$$\frac{\operatorname{Proof} \circ S \otimes}{K} = We \operatorname{apply} (A) \operatorname{many times}.$$

$$K \subset \bigcup \bigcup_{j \in I} \Rightarrow \exists \bigcup_{i \neq i \neq k} N_{X_{i}} \supset K$$

$$\forall x \in K = \bigcup \bigcup_{j \in I} S_{y} \operatorname{Lemmes}.$$

$$\exists N_{X_{i}} \subset \bigcup_{j \in I} \text{ for some } \bigcup_{j \in I} K \cap N_{j}.$$

$$(\operatorname{ollect then} \Rightarrow K \subset \bigcup_{j \in I} N_{j}.$$

$$\widetilde{N}_{j} \subset \bigcup_{j \in I} \operatorname{Compact}.$$

$$\Rightarrow \exists h_{j} \qquad h_{j} | \sum_{\widetilde{N}_{j}} K \cap N_{j}.$$

Now Consider $h = \sum_{j=1}^{k} h_j \Rightarrow on k h_j$

$$\begin{cases} h > o \} \subset \bigcup_{j=1}^{k} \widetilde{N_{j}} \\ o pen \end{cases}$$

$$\exists \int_{i \in C(X; T_{0}, \eta)} : \widehat{T}|_{K} = 1 \quad \& \quad Supp f \subset \{h > o\} \}$$

$$\exists h = i (X; T_{0}, \eta) : f = i (X; T_{0}, \eta) : f = 1 \quad \& \quad Supp f \subset \{h > o\} \}$$

$$Then \quad h + (1 - f) > o \quad on K$$

$$Outside \{h > o\} \quad h = o, \quad b \in \{f = 0\} \Rightarrow \quad h + (i - f) > o$$

$$Henu \quad h + (i - f) > o \quad on X$$