(1) Approximation of Soboler functions by smooth ones
\exists Many discussions in $[E G]$ ch 4 .

$$
j(x)=\left\{\begin{array}{cc}
c \exp \left(\frac{1}{|x|^{2}-1}\right) & \text { if }|x|<1 \\
0 & |x| \geqslant 1
\end{array}\right.
$$

The 1.

$$
\int_{\mathbb{R}^{n}} j(x)=\int_{B(0,1)} j(x)=1
$$

$$
\frac{\text { The } 1 .}{\forall f} \in W_{\operatorname{loc}}^{1 . p}(\Omega) \quad 1 \leqslant p \leqslant \infty \quad f^{\varepsilon} \in c^{\infty}\left(\Omega_{c}\right)
$$

Then $D_{j} f^{\varepsilon}=D_{j} f * j_{2}$
\& if $p<\infty \quad f^{\varepsilon} \rightarrow f$ in $W_{\text {lie }}^{\text {l. } p}(\Omega)$.
Remark: Global approximation is possible.
$\frac{\text { The 2 }}{\text { Namely }} \quad \forall f \in W^{1 \cdot p}(\Omega) \quad \exists \quad f^{k} \in W^{1 \cdot p}(\Omega) \cap c^{\infty}(\Omega)$

$$
\left\|f^{k}-f\right\|_{w^{\prime, p}} \rightarrow 0
$$

If $\partial \Omega$ is Lipschitz $\Rightarrow \exists \quad f_{k} \in W^{1 . p}(\Omega) \cap \subset^{\infty}(\bar{\Omega})$
pf: $\Omega_{\varepsilon}:=\left\{x \in \Omega \mid d\left(x, \Omega^{c}\right)>\varepsilon\right\}$

$$
\begin{aligned}
& U \Omega_{\varepsilon}=\Omega \\
& f^{\varepsilon}(x)=\int f(x-y) \eta_{\varepsilon}(y)=\int_{B(u, \varepsilon)} f(x-y) \eta_{\varepsilon}(y)
\end{aligned}
$$

make sense $\forall x \in \Omega_{\varepsilon}$

$$
\begin{aligned}
& f^{\varepsilon}(x)-f(x)=\int_{B(0, \varepsilon)}(f(x-y)-f(x)) \eta_{\varepsilon}(y) \\
& \Rightarrow \forall V \subset c \Omega \\
&\left(\int_{V}\left|f^{\varepsilon}-f\right|^{p}(x) d x\right)^{p}=\int_{B(0, \varepsilon)}\left(\int_{V}|f(x-y)-f(x)|^{p}\right)^{\dot{p}} \eta_{\varepsilon}(y) d y
\end{aligned}
$$

Since $\left\|\tau_{y} f-f_{L}\right\|_{(v)} \rightarrow 0$ as $y \rightarrow 0$
We have the result.
Now $\quad f^{\varepsilon}(x)=\int f(\underbrace{(x-y)}_{z} \eta_{\varepsilon}(y)$

$$
=\int_{B(x, z)} f(z) \eta_{\tau}(x-z) d z
$$

$$
=\int_{\Omega} f(z) \eta_{c}(x-z) d z
$$

$$
\begin{aligned}
\partial_{j} f^{\varepsilon}(x) & =\int_{\Omega} \begin{array}{r}
\left.\int_{\Omega} f(z)\right)_{j}^{x} \eta_{\varepsilon}(x-z) d z \\
-\partial_{j}^{z} \eta_{\varepsilon}(x-z) d z
\end{array} \\
& =+\int(\partial ; f) \eta_{\varepsilon}(x-z) d z \\
& =(\partial ; f)^{\varepsilon} \quad \partial_{j}\left(f^{\varepsilon}\right)
\end{aligned}
$$

Apply the above $\Rightarrow\left\|\left(\partial_{j} f\right)^{\varepsilon}-\partial_{j} f\right\|_{\mathbb{E}(u)} \longrightarrow 0$, as $\varepsilon \rightarrow 0$

$$
\Rightarrow \forall V c c \Omega \quad\left\|f^{\varepsilon}-f\right\| \omega_{w^{\prime \cdot p}(0)} \rightarrow 0
$$

Remark: If $\operatorname{spt}(f) \subset \Omega$ \& $f \in W^{1 \cdot p}(\Omega)$ the above shows $\exists f^{\varepsilon} \in C^{\infty}(\Omega) . \quad\left\|f^{\varepsilon}-f\right\|_{\omega^{\prime} \cdot p} \rightarrow 0$
(2)

$$
\widetilde{\Omega}_{k}=\Omega_{\gamma_{k}} \cap B(0, k) \quad\left(\jmath \Omega_{k}=-2\right.
$$

$\Omega_{k} \subset \subset \Omega_{k+1}$
Hence let

$$
V_{k}=\Omega_{k+1} \backslash \bar{\Omega}_{k-1}
$$

$$
\begin{align*}
& V_{2}=\Omega_{3} \backslash \bar{\Omega}_{1} \tag{1}\\
& U V_{n}=\Omega
\end{align*}
$$

$$
V_{1}=\Omega_{2}
$$

pick ξ_{k} such that $\operatorname{spt}\left(\xi_{k}\right) \subset \subset V_{k} \sum \xi_{l}=1$

$$
0 \leqslant \xi_{k} \leqslant 1
$$

Let ε_{k} small such that: $\operatorname{spt}\left[\left(f \xi_{1}\right)_{\varepsilon_{1}}\right] \operatorname{c}\left(V_{k}\right.$

$$
\left\|\left(f \xi_{k}\right)^{\varepsilon_{k}}-f \xi_{l}\right\|_{w^{\prime} \cdot p} \leqslant \frac{\varepsilon}{2^{k}}
$$

Then $f^{\varepsilon}:=\sum_{k=1}^{\infty}\left(f \xi_{k}\right)^{\varepsilon_{k}}$
is well-defined since only finite sum involved.

$$
\begin{aligned}
& \left\|f^{\varepsilon}-f\right\|_{W^{1 \cdot p}}=\left\|\sum_{k=1}^{\infty}\left[\left(f \xi_{k}\right)^{\varepsilon_{k}}-f \xi_{l}\right]\right\|_{W^{\prime \cdot p}} \\
& \leqslant \sum_{l=1}^{\infty}\left\|\left(f \xi_{k}\right)^{\varepsilon_{k}}-f \xi_{l}\right\|_{W^{\prime \cdot p}} \leqslant \varepsilon
\end{aligned}
$$

Remark: \exists Thm $f^{\varepsilon} \in \omega^{1 . p}(\Omega) \cap c^{\infty}(\bar{\Omega}) \quad f^{\varepsilon} \rightarrow f$ in $\omega^{\text {1.p }}$ if $\partial \Omega$ is Lipschitz.
(3) A chain rule.

Thim3. (6.16 of $L L$). $G: \mathbb{R}^{N} \rightarrow \mathbb{C}$ is C^{\prime}
$\& \nabla G$ is bounded \& continuons

$$
\begin{aligned}
& u=\left(u,(x), \cdots u_{N}(x)\right) \quad u_{i}(x) \in W_{\text {loc }}^{1 \cdot p}(\Omega) \\
& \Rightarrow \quad k(x)=(G \circ u)(x)=G(u(x)) \in W_{\text {loc }}^{1 \cdot p}(\Omega)
\end{aligned}
$$

Moreover (i) $f_{j} K(x)=\frac{\partial G}{\partial w_{k}}(u) \frac{\partial u_{k}}{\partial x_{j}}$
(ii) If $u \in \omega^{1, p}(\Omega)$
then $k \in \omega^{1 . p}(\Omega)$ if either $|\Omega|<. \infty$ or $G(0)=0$.

Pf: For $V \subset C \Omega$.
$u^{\varepsilon} \longrightarrow u$ in $w^{1 \cdot p}(V)$ as $\varepsilon \rightarrow 0$
$\exists \varepsilon_{s}^{\prime} \rightarrow 0 \quad u^{\varepsilon_{s}} \longrightarrow u \quad \& \quad \partial_{j} u^{\varepsilon_{s}} \longrightarrow 7_{j} u \quad$ a.e.
subsequence
Now we have

$$
\begin{aligned}
& K^{\varepsilon_{s}}=G\left(u^{\varepsilon_{s}}\right) \quad K^{\varepsilon_{s}}-K=G\left(u^{\varepsilon_{s}}\right)-G(u) \\
\Rightarrow & \left|K^{\varepsilon_{s}}-K\right| \leqslant C\left|u^{\varepsilon_{s}}-u\right| \leqslant C \quad \sum_{l=1}^{N}\left|u_{l}^{\varepsilon_{j}} u_{l}\right| \\
\Rightarrow & \quad\left\|K^{\varepsilon_{s}}-K\right\|_{L(v)} \longrightarrow 0
\end{aligned}
$$

By $D C T$.
Now

$$
\int \frac{\partial G}{\partial w_{l}}(u)\left(\frac{\partial\left(u_{k}\right)^{\varepsilon_{s}}}{\partial x_{j}}-\frac{\partial u_{k}}{\partial x_{j}}\right) \psi \rightarrow 0
$$

$$
\text { as } s \rightarrow \infty \quad \text { since }\left\|d^{q_{j}}-u\right\|_{w^{\prime} \cdot p(v)} \longrightarrow 0
$$

Hence we have that

$$
\partial_{j} K^{\varepsilon_{s}} \rightarrow \widetilde{\partial_{j} K}
$$

as distributions
But $\left\langle\partial_{j} k^{\varepsilon_{s}}, \phi\right\rangle=\left\langle K^{\varepsilon_{s}},-\partial_{j} \phi\right\rangle$

$$
\rightarrow \quad\left\langle K,-\partial_{j} \phi\right\rangle \quad \text { since } \quad K^{\varepsilon,} \rightarrow K_{s \rightarrow \infty} \operatorname{in} L^{p}
$$

$$
\begin{aligned}
& \partial_{j} \cdot K^{\varepsilon_{s}}=\frac{\partial G}{\partial \omega_{k}}\left(u^{\varepsilon_{s}}\right) \frac{\partial\left(u_{k}\right)^{\varepsilon_{s}}}{\partial x_{j}} \\
& \overline{\partial j K} \doteq \frac{\partial G}{\partial \omega_{k}}(u) \frac{\partial u_{k}}{\partial x_{j}} \\
& \Rightarrow \int\left(\partial j^{k^{\varepsilon_{s}}}\right) \phi=-\int \frac{\partial G}{\partial \omega_{k}}\left(u^{\varepsilon_{s}}\right) \frac{\partial\left(u_{k}\right)^{\varepsilon_{s}}}{\partial x_{j}} \phi \\
& \int \widetilde{(\partial j K)} \phi=-\int \frac{\partial G}{\partial \omega_{h}}(u) \frac{\partial u_{h}}{\partial x_{j}} \psi \\
& \xlongequal{\text { dst }} \int[\underbrace{\left.\frac{\partial G}{\partial \omega_{k}}\left(u^{\varepsilon_{s}}\right)-\frac{\partial G}{\partial \omega t}(u)\right]} \frac{\partial u_{k}}{\partial x_{j}} \psi \underbrace{\longrightarrow 0}_{\text {as } s \rightarrow \infty}
\end{aligned}
$$

$\Rightarrow\left\langle\partial_{j} K, \phi\right\rangle=\langle\overline{\partial j K}, \phi\rangle$ as distributions.
(4) Thin $6,17 \circ f L L$.

$$
\begin{aligned}
& f \in W^{1 \cdot p}\left(\Omega | \Rightarrow | f \left|(x)=|f(x)| \in W^{\text {lop }}(\Omega)\right.\right. \text {. } \\
& \nabla|f|= \begin{cases}\frac{1}{\mid f((x)}(u(x) \nabla u(x)+v(x) \nabla v(x)) & \text { if } f(x) \neq 0 \\
0 & f(x)=0\end{cases} \\
& f(x)=u(x)+\sqrt{-1} u(x) . \\
& f>0 \\
& f(x)=0 \\
& \text { Inparticilar, } \quad \nabla|f|(z)= \begin{cases}-\nabla f & f<0\end{cases} \\
& f=0
\end{aligned}
$$

for real f
\& $\mid \nabla(f|(x)| \leqslant|\nabla f| \quad$ a.e.
pf: $\quad|f|=\sqrt{u^{2}+v^{2}}$
Now let $G^{\varepsilon}(u, u)=\sqrt{\varepsilon^{2}+u^{2}+v^{2}}-\varepsilon$

$$
G^{\varepsilon}(0,0)=0 .
$$

We can apply Thu 3 above.

$$
\begin{aligned}
& \frac{\partial G^{\varepsilon}}{\partial u}=\frac{u}{\sqrt{\varepsilon^{2}+u^{2}+v^{2}}}, \quad \frac{\partial G^{\varepsilon}}{\partial v}=\frac{v}{\sqrt{\varepsilon^{2}+u^{2}+v^{2}}} \\
\Rightarrow & \left|\nabla G^{\varepsilon}\right| \leqslant 1
\end{aligned}
$$

Hence $\Rightarrow \quad K^{\varepsilon}:=G^{\varepsilon}(u, u)$

$$
\begin{aligned}
& \int \partial_{j} k^{\varepsilon} \phi=-\int k^{\varepsilon} \partial_{j} \phi \\
& \int \frac{u \partial_{j u}}{\sqrt{\varepsilon^{2}+u^{2}+v^{2}}} \phi+\frac{v \partial_{j} u}{\sqrt{\varepsilon^{2}+u^{2}+u^{2}}} \phi
\end{aligned}
$$

observe.

$$
\begin{aligned}
& k^{\varepsilon}:=G^{\varepsilon}(u, u)=\sqrt{\varepsilon^{2}+u^{2}+v^{2}}-\varepsilon \\
& \longrightarrow|f| \quad \text { ane }
\end{aligned}
$$

$$
\& \quad \sqrt{\varepsilon^{2}+u^{2}+v^{2}}-\varepsilon \leqslant \sqrt{u^{2}+u^{2}} \quad\left(\Leftrightarrow \sqrt{\varepsilon^{2}+u^{2}+v^{2}} \leqslant \varepsilon t \sqrt{u^{2}+v^{2}}\right)
$$

(Namely $K^{\varepsilon} \leqslant|f|$.)

$$
D C T \Rightarrow \quad \int k^{\varepsilon} \partial_{j} \phi \rightarrow \iint_{\substack{11 \\ \mid f\left(\partial_{j} \phi\right.}}^{k \partial_{j} \psi}
$$

On the other hand

$$
\begin{aligned}
& \frac{u \partial_{j} u}{\sqrt{\varepsilon^{2}+u^{2}+v^{2}}}+\frac{v \partial_{j} v}{\sqrt{\varepsilon^{2}+u^{2}+v^{2}}} \leqslant|\partial j u|+|\partial v| \\
\Rightarrow & B y D C T \quad a g a i \\
& \int\left(\frac{\left.u \partial_{j} u+v \partial j v\right)}{\sqrt{\varepsilon^{2}+u^{2}+v^{2}}}\right) \phi \rightarrow \int_{|f| \neq 0} \frac{u \partial_{j u}+v \partial_{j} u}{\sqrt{u^{2}+v^{2}}} \psi
\end{aligned}
$$

(5) Fundamental solutions

$$
\begin{aligned}
& G_{y}(x)=-\frac{1}{\left|\mathbb{S}^{\prime}\right|} \ln (|x-y|) \quad n=2 \\
& G_{y}(x)=\frac{1}{(n-2)\left|\mathbb{S}^{n-1}\right|}|x-y|^{-(n-2)} \quad n \geqslant 3 \\
& \left|\Phi^{n-1}\right|=2 \pi^{n / 2} / \left\lvert\,\left(\frac{n}{2}\right)\right.
\end{aligned}
$$

Theorem: $-\Delta G_{y}=\delta_{y}$
Proof: $\forall \notin$ compact supported c^{∞} function

$$
\begin{aligned}
&-\int G_{y} \Delta \phi=\phi(y) \\
& \int C_{n}\left(|x-y|^{-(n-2)}\right) \Delta \phi(x) \\
&=\lim _{\varepsilon \rightarrow 0} C_{n} \int_{B(y, R) \backslash B(y, \varepsilon)} \frac{\Delta \phi(x)}{|x-y|^{n-2}} d x
\end{aligned}
$$

Check $\Delta_{x} G=0 \quad \forall x \neq y$

Green's formula

$$
\begin{aligned}
& \int \operatorname{div}(x)=\int\langle x, v\rangle \\
& X=G \nabla \phi \Rightarrow \operatorname{div}(X)=\langle\nabla G, \nabla \phi\rangle+G \Delta \psi \\
& \langle x, v\rangle=G\langle\nabla \phi, v\rangle
\end{aligned}
$$

If $X=(\nabla G) \phi \Rightarrow \operatorname{div}(X)=\langle\nabla G, \nabla \phi\rangle+\phi \Delta G$

$$
\begin{aligned}
& \langle x, v\rangle=\langle \rangle G, v\rangle \phi \\
& =+\int_{\partial B(y, \varepsilon)} \frac{C \cdot}{|x-y|^{n-2}} \underbrace{}_{\substack{ } \int_{\partial B \times+t h}^{\langle\phi, v\rangle}}\left(+\frac{\partial G}{\partial r_{y}}\right) \phi \text { as } \leqslant-\langle\nabla G, v\rangle \\
& G=\frac{C_{n}}{r_{y}^{n-2}} \quad \frac{\partial G}{\partial r_{y}}=-(n-2) \frac{C_{n}}{r_{y}^{t_{y}^{(n-1)}}} \\
& \Rightarrow \quad \int_{\partial B(y \varepsilon)} \frac{\partial G}{\partial r_{y}} \phi=-(n-2) C_{n} \int_{\mathbb{S}^{n-1}} \phi(y+\varepsilon \theta) d \theta \\
& \rightarrow \varepsilon=-(n-2) C_{n} \phi(y)\left|\mathbb{S}^{n-1}\right|=\phi(y)
\end{aligned}
$$

$n=2$ care is similar.

$$
\dot{\circ}
$$

