The result of the vector-valuad version is more general in tho ways:
(i) Assumption is mech them FO \& (B)
(ii) Covers vector valued functions.
, Which is useful to study BV functions:

$$
f \in L_{10 c}^{\prime}(\Omega) \text {, such th }
$$

such that

$$
\frac{f \in L_{1 o c}^{1}(\Omega),}{T(\phi):=-\int} f \sum_{i=1}^{n} \frac{\partial \phi^{2}}{\partial x_{i}} \quad \text { such that } \quad \text { shies }\left|T_{f}(\phi)\right| \leqslant C_{k}|\phi|
$$

$\frac{\phi \in C_{c}^{\infty}\left(\Omega, \mathbb{R}^{n}\right),{ }^{\text {sp }} \subset K .}{\text { If } f \in W_{l o c}^{\prime}(\Omega) \quad \sum \int \frac{\partial f}{\partial x_{i}} \phi^{i}} \sqrt{W_{l o c}^{1}(\Omega) \subset\left(B V_{l o c}(\Omega)\right.}$
(A) $\Rightarrow \exists \mu \& \sigma \quad|\sigma|=1$. a.e
$\frac{\partial f}{\partial x_{i}}=\sigma_{i} d \mu$, Namely f has derivation.
as a measure μ
Together with $\sigma=\left(\begin{array}{ll}\sigma_{1}, \ldots & \sigma_{n}\end{array}\right) \sim\left(\frac{\nabla f}{|\nabla f|}\right)$
(1) Now we pare (c), (b) of (iv)

Pf of (a): $\lambda(f)=\sup \{|T(g)|| | g \mid \leqslant f\}$
Clearly $\quad \lambda(c f)=c \lambda(f)$
For $f_{1} \& f_{2} . \quad \lambda\left(f_{1}+f_{2}\right):=\sup \left\{| |(g)|\quad| g \mid \leqslant f_{1}+f_{2}\right\}$
Construct $\quad g_{i}=\left\{\begin{array}{cl}\frac{g_{i}}{f_{1}+f_{2}} & f_{1}+f_{2}>0 \\ 0 & \text { else }\end{array}\right.$

$$
x_{k} \rightarrow x_{0}, \quad\left(f_{1}+f_{2}\right)\left(x_{0}\right)=0 \quad\left|g_{i}\left(x_{k}\right)\right| \leqslant \underset{\text { since }|g| \leqslant f_{1}+f_{2}}{g\left(x_{k}\right)}
$$

$$
\begin{aligned}
& g=g_{1}+g_{2} \quad\left|g_{i}\right| \leqslant f_{i} \\
\Rightarrow & |T(g)| \leqslant\left|T\left(g_{1}\right)\right| t\left|T\left(g_{2}\right)\right| \leqslant \lambda\left(f_{1}\right)+\lambda\left(f_{2}\right) .
\end{aligned}
$$

On the other hand, $\forall i>0, \exists \quad g_{i} \quad\left|T\left(g_{i}\right)\right|+\varepsilon / 2 \geqslant \lambda\left(f_{i}\right)$

$$
\begin{aligned}
& \quad\left|g_{i}\right| \leqslant f_{i} \\
& \Rightarrow \quad g=g_{1}+g_{2} \quad \text { satisfies } \\
& |g| \leqslant\left|g_{1}\right|+\left|g_{2}\right| \leqslant f_{1}+f_{2} \Rightarrow T(g)=T\left(g_{1}\right)+T\left(g_{2}\right) \\
& |T(g)|=\left|T\left(g_{1}\right)\right|+\left|T\left(g_{2}\right)\right|\left(\underset{\text { by flipping } g_{i} \rightarrow-\rho_{i} \text { if needed }}{\left.=T\left(g_{2}\right)\right)}\right. \\
& \geqslant \lambda\left(f_{1}\right)+\lambda\left(f_{2}\right)-\varepsilon
\end{aligned}
$$

Hence $\lambda(f) \geqslant \lambda\left(f_{1}\right)+\lambda\left(f_{2}\right]$.
For (b), the proof is similar to that in FO ((ii) on pasez(14).
But if we use FD Thai 7.2, it is easy to show
$\lambda(f)=\int f d \tilde{\mu} \quad$ for $\tilde{\mu}-$ Radon measure
defined by $\tilde{\mu}(U):=\sup \{\lambda(f) \mid u \leqslant f \leqslant 1, \operatorname{spt} f(0)\}$
Claim: $\quad \tilde{\mu}(U)=\mu(U)$
$\forall f$, in $\tilde{\mu}$-definition. consider,
$g \quad|g| \leq f J$
\Rightarrow such $g \in C_{c}\left(\Omega, \mathbb{R}^{m}\right) \quad \operatorname{spt} g \subset U \& 0 \leqslant|g| \leqslant 1$
Heme $|T(g)| \leqslant \mu(U)$ by μ-definition
$\Rightarrow \quad \lambda(f) \leqslant \mu(U)$ if f is in $\tilde{\mu}$-definition

$$
\Rightarrow \quad \tilde{\mu}(u) \leqslant \mu(u)
$$

On the other hand, $\forall \quad g$ in μ-definition
Let $f=|g| \Rightarrow f$ satisis $\tilde{\mu}$-definition

$$
T(g) \leqslant \lambda(f) \leqslant \tilde{\mu}(U) \Rightarrow \mu(U) \leqslant \tilde{\mu}(U)
$$

(2) Construction of σ.

$$
\begin{gathered}
\forall e \in \mathbb{R}^{m} \quad|e|=1 \quad T_{e}(f)=T(f e) \quad \forall f \in C_{c}(\Omega, \mathbb{R}) . \\
\left|T_{e}(f)\right| \leqslant\left|T\left(f_{e}\right)\right| \leqslant \begin{array}{c}
\lambda(|f|) \\
\sup ^{\prime \prime}\{|T(g)|| | g|\leqslant|f|\} \\
g_{0}=f e \text { will be one }
\end{array}
\end{gathered}
$$

Hence $T_{e}(f)$ is a bounded linear function of $L^{\prime}\left(d_{\mu}\right)$ By the duality theorem:

$$
T_{e}(f)=\int f \cdot \sigma_{e} d \mu
$$

(T hr6.15 of FD):
for some $\sigma_{e} \in L^{\infty}\left(\Omega, d_{\mu}\right)$.
Applying to e_{1}, \ldots en standard basis of $\mathbb{R}^{n} \Rightarrow$

$$
\exists \quad \sigma_{1}, \ldots \quad \sigma_{m}
$$

\& $T_{e i}(f)=T\left(f e_{i}\right)$
Hence for $g=\sum_{i=1}^{m} g^{i} e_{i} \Rightarrow$

$$
\begin{aligned}
& u \text { for } \quad g=e_{i=1} d_{i} \Rightarrow \sum_{i=1}^{m} g^{i} \sigma_{i} d u \\
& T(g)=T_{e_{i}}^{m}\left(g^{i}\right)=\quad \Rightarrow \quad
\end{aligned}
$$

(3)

Now we show $|\sigma|=1$, are for μ.
It suffices to show $\forall U-$ open

$$
\begin{equation*}
\int_{U}|\sigma| d m=\mu(U) \tag{*}
\end{equation*}
$$

We use Lusin's theorem find [Thu 7.10 of FD]

$$
f_{k}^{i} \rightarrow \frac{\sigma_{i}}{|\sigma|} \text { as } h \rightarrow \infty \quad \text { such that } \quad\left\|f_{i}\right\|_{u}\left\|_{u}\right\| \frac{\mid \sigma i \|_{0}}{|\sigma|} \|_{\infty}
$$

$\& f_{k}^{i} \in C_{c}(\Omega, \mathbb{R})$

$$
\begin{aligned}
& \Rightarrow F_{n} \quad f_{k}^{\in}\left(\begin{array}{ll}
f_{k}^{\prime}, \cdots & f_{k}^{m}
\end{array} \quad \begin{array}{l}
\operatorname{spt}\left(f_{k}\right) \subset U
\end{array}\right. \\
& \Rightarrow \quad T\left(f_{k} \mid \leqslant 1\right. \\
& \Rightarrow \quad T\left(f_{k}\right)=\quad \int_{U}|\sigma| d \mu=\lim _{k \rightarrow \infty} \int_{U}\left(f_{k}^{i} \sigma_{i}\right)=T\left(f_{k}^{i} \sigma_{i}\right) d \mu
\end{aligned}
$$

On the other hand

$$
\begin{aligned}
& \forall \quad f_{\sigma} \text { satiric, } \quad|f| s \mid . \quad s p t(f) \in U \\
& \Rightarrow \quad T(f)=\int\langle f, \sigma\rangle d \mu \leqslant \int_{U}|\sigma\rangle d u
\end{aligned}
$$

Hence $v(c) \leqslant \int_{U}^{|V| d m}$
putting together $\Rightarrow \quad \int_{U}|\sigma| d \mu=\mu(u)$
$(女) \Rightarrow \quad|0|=1 \quad$ use
If NoT. say $\left.\exists n \quad E=\underset{f}{\{10 \mid} \left\lvert\, \geqslant 1+\frac{1}{n}\right.\right\} \quad \sim_{A}^{\mu}(E)>0$
By regularity $\Rightarrow \quad \exists U \quad \mu(U(E)<\varepsilon$
Hope. Define $g= \begin{cases}f & \text { in } E \\ 0 & \text { else }\end{cases}$

$$
\Rightarrow \quad\|g\|_{L^{\infty}} \leqslant\|f\|_{L^{\infty}}=C .
$$

Since Ω is G-compoct $\Rightarrow \mu$ is σ finite We nay replace Kim by $E \cap F_{d}$ $u\left(F_{j}\right)<+\infty$ Hence $\mu\left(E \cap F_{j}\right)<+\infty$ \& make the EnFj.

$$
\begin{aligned}
& \int_{1}^{1} \int_{U}\left(f f_{U} g\right)=\int_{U \backslash E} f \geqslant 0 \\
& \text { '. } \mu(U))^{\prime}-\int_{U} g=\mu(U)-\underbrace{\int_{E}^{f} \leqslant\left(1+\frac{1}{n}\right) \mu(E)}_{\int_{E} f} \leqslant \varepsilon(U)-\mu(E)-\frac{1}{n} \mu(E) \\
& \int_{E} f \geqslant\left(1+\frac{1}{n}\right) \mu(E) \\
& 0 \leqslant \varepsilon-\frac{1}{n} \mu(E)
\end{aligned}
$$

Not possible if $\varepsilon \ll 1$.
Similarly if $E=\left\{\left.\begin{array}{c}|6| \leqslant 1 \\ f\end{array} \right\rvert\,-\frac{1}{n}\right\}$. has positive measure

$$
\begin{aligned}
& \int_{\omega}(f-g)=\int_{U \backslash E} f \leqslant C \mu(U(E) \\
& \mu(U)-\int_{E} f \geqslant \mu(U)-\mu(E)\left(1-\frac{1}{n}\right) \\
\Rightarrow & \quad \frac{1}{n} \mu(E) \leqslant(1+C) \underbrace{\mu(U \mid E}_{\varepsilon}) . \quad \text { fur } \varepsilon \ll \backslash
\end{aligned}
$$

This is NoT possible.

