Three results from LL.
(1) Theorem 6.9.

Let $\Omega \subset \mathbb{R}^{n}, T \in D^{\prime}(\Omega), \phi \in D(\Omega)$. Assume $\phi_{t y} \in D(\Omega)$ for some $y \in \mathbb{R}^{n}$. $0 \leqslant t \leqslant 1$
Then $T\left(\phi_{y}\right)-T(\phi)=\int_{0}^{1} \sum y_{j}\left(\partial_{j} T\right)\left(\phi_{\text {ty }}\right) d t$
$\forall f \in \omega_{10<}^{1,1}\left(\mathbb{R}^{n}\right) \quad \forall y \in \mathbb{R}^{n}$

$$
\begin{equation*}
f(x+y)-f(x)=\int_{0}^{1}\langle y, \nabla f(x+t y)\rangle d t \tag{1.2}
\end{equation*}
$$

proof:

$$
\begin{aligned}
& F(y)-F(t)=\int_{0}^{1} \frac{d}{d t} F(t y) d t \\
= & \left.\int_{0}^{1} \sum y_{j} \frac{\partial F}{\partial y_{j}}\right|_{t y} d t .
\end{aligned}
$$

$F(y)=T\left(\phi_{y}\right)$ we also have $\frac{\partial F}{\partial y_{j}}=\frac{\partial}{\partial y_{j}} T\left(\phi_{y}\right)$

$$
=(0 j T)\left(\psi_{y}\right) \quad \Rightarrow \quad 1.1
$$

(1.2) is a simple consequence of (1.1).
(2) Thm6.10.

$$
\Omega \subset \mathbb{R}^{n}, \quad T \in D^{\prime}(\Omega), \quad G_{i}=J_{i} T \in D^{\prime}(\Omega), \quad \forall i=1, \ldots, n .
$$

Then the following two are equivalent
(i) T is a function $f \in C^{\prime}(\Omega) \quad\left(W_{10,}^{1.1}(\Omega)\right)$
(ii) G_{i} is a function $g_{i} \in C^{0}(\Omega) \quad\left(L_{\text {bloc }}^{\prime}(\Omega)\right) \forall i=1, \ldots n$.

In each case, $g_{i}=\frac{\partial f}{\partial x_{i}} \quad\binom{$ the classical or }{ generalized derivative }

Pf: (i) \Rightarrow (ii) is obvious!
(ii) \Rightarrow (i): The keys is find function f which gives

$$
\begin{aligned}
& T_{f}=T_{\text {. }} \\
& \forall \Omega_{\delta}:=\left\{x \in \Omega \mid \quad \operatorname{dist}\left(x, \Omega^{c}\right)>\delta\right\} \quad \begin{array}{c}
\delta>0 \\
\text { small }
\end{array}
\end{aligned}
$$

we will consider $\phi \in D(\Omega \delta)$. ϕ_{y} is defineal if $|y|<\delta / 2$.

$$
\begin{aligned}
& T\left(\phi_{y}\right)-T(\phi)=\int_{0}^{1}\left[\sum y_{j}\left(\partial_{j} T\right)\left(\phi_{t y}\right)\right] d t \\
& =\int_{0}^{1}[\sum y_{j} \int_{\Omega} g_{j}(x) \phi(\underbrace{x-t_{y}}_{z}) d x] d t
\end{aligned}
$$

Since $\forall x \in \Omega_{s / 2}^{c} \Rightarrow \phi(x-t y)=0$

$$
\begin{aligned}
& =\int_{0}^{1} \int_{\Omega_{\delta}} \sum y_{j} g_{j}(z+t y) \phi(z) d z d t \\
& \forall \psi \int_{B_{\frac{\delta}{2}}} \psi=1 \operatorname{supp} \psi C B(0, \delta / h)^{\Rightarrow} \int_{B_{\frac{\delta}{2}}} \psi(y) T\left(\phi_{y}\right) d y-F(\phi)=\int_{B_{\frac{\delta}{2}}} \psi(y)\left(T\left(\phi_{n}\right)-T(\phi)\right) d y \\
& =\int_{\Omega \delta}\left[\int_{0}^{1} \int_{B_{\frac{\delta}{2}}} \psi(y) \sum y_{j} g_{j}(z+t y) d y d t\right] \psi(z) d z \\
& \Rightarrow T(\phi)=\int_{B_{\frac{\delta}{2}}} \psi(y) T\left(\phi_{y}\right)-\text { RHS } .
\end{aligned}
$$

But

$$
\begin{aligned}
\int_{B_{\frac{\delta}{2}}} \psi(y) T\left(\phi_{y}\right) & =T(\underbrace{\psi * \phi})=\psi * \psi \\
& =\int_{\Omega \delta} \phi(x) T\left(\psi_{x}\right) d x
\end{aligned}
$$

Hence if let

$$
f(x)=T\left(\psi_{x}\right)-\sum_{j=1}^{n} \int_{B_{j / 2}} \psi(y) \int_{0}^{1} y_{j} g_{j}(x+t y) d t d y
$$

We have $T(\phi)=\int f \phi \quad \forall \phi \in C_{c}^{\infty}\left(\Omega_{\delta}\right)$.
This construct $f \in C\left(\Omega_{s}\right)$
On the other hand $\partial_{j} f=g_{j} \in C^{\circ}(\Omega)\left(o r L_{\text {loo }}^{\prime}(\Omega)\right)$

$$
\Rightarrow \quad f \in \omega_{\text {loo }}^{1.1}(\Omega)
$$

\&

$$
\begin{equation*}
f(x+y)-f(x)=\int_{0}^{1} \sum g_{j}(x+t y) y_{j} \cdot d t \quad \text { by } \tag{1}
\end{equation*}
$$

$\Rightarrow \quad f$ is c^{\prime}
Corollary: If T has $\partial_{j} T=0 \Rightarrow$

$$
T(\phi)=c \int \phi
$$

(Exercise $F D$. 9,13).
(3) $\operatorname{Thm} 6.14: \quad N_{T}:=\{\phi \in D(\Omega) \mid T(\phi)=0\}$

Namely the kernel of T.

Let $S_{1}, \cdots S_{\ell} \in D^{\prime}(\Omega)$, $T \in \mathcal{D}^{\prime}(\Omega)$.
Assume $T(\phi)=0 . \quad \forall \phi \in \bigcap_{i=1}^{l} N_{S_{i}}$
Then $\exists c_{1}, \ldots c_{l}$ such that

$$
T=\sum_{i=1}^{l} c_{i} S_{i}
$$

Pf: W.L.G assume $\left\{S_{i}\right\}$ linearly indep.

$$
V_{S}:=\left\{\left(\begin{array}{c}
S_{1}(\phi) \\
\vdots \\
S_{l}(\phi)
\end{array}\right) \quad \forall \phi \in \infty(\Omega)\right\}
$$

V_{S} is a linear space.
Claim it is of dim l.

$$
\begin{aligned}
& \text { If } \exists \quad \vec{a}=\left(\begin{array}{c}
a_{1} \\
\vdots \\
a l
\end{array}\right) \quad \sum a_{i} S_{i}(d)=0 \quad \forall \phi \\
& \Rightarrow \quad \text { Luis }=0 \Rightarrow(\Rightarrow \Leftrightarrow) \text {. } \\
& \Rightarrow\left(\begin{array}{c}
s_{1}\left(\phi_{1}\right) \\
\vdots \\
s_{l}\left(\phi_{1}\right)
\end{array}\right)=\vec{v}_{1} \quad \cdots \quad \begin{array}{c}
v_{l} \\
\\
\end{array}
\end{aligned}
$$

Form a basis of V_{s}.

$$
\begin{aligned}
& M=\left(\begin{array}{lll}
\vec{v}_{1} & \cdots & \vec{v}_{l}
\end{array}\right) \\
& \lambda_{i}(\phi)=\sum\left(M^{-1}\right)_{i j} s_{j}(\phi)
\end{aligned}
$$

Define $\phi=v+\sum \lambda_{i}(\phi) \phi_{i} \quad\binom{N$ amply }{$v \doteqdot \phi-\sum \lambda_{i}(\phi) \phi_{i}}$
Check. $v \in \cap N_{s_{i}}$

$$
\begin{aligned}
& S_{k}(v)=S_{k}(\phi)-\sum \lambda_{i}(\phi) S_{k}\left(\phi_{i}\right)=0 \\
& {\left[\begin{array}{l}
\sum_{i} \lambda_{i}(\phi) S_{k}\left(\phi_{i}\right)=\sum\left(M^{-1}\right)_{i j} S_{j}(\phi) \underbrace{S_{k}\left(\psi_{i}\right)}_{M_{k i}} \\
=\delta_{j k} S_{j}(\phi)=S_{k}(\phi)
\end{array}\right]}
\end{aligned}
$$

Hence

$$
T(\phi)=\sum(\underbrace{\left.M^{-1}\right)_{i j} T\left(\phi_{i}\right) S_{j}(\phi)}_{\pi_{c_{j}}}
$$

