(1) Three consequences
The 1:
$$T \in \mathcal{L}(Z, \mathcal{Y})$$
, $Z \in \mathcal{Y}$ Banach
If T is bijection \Rightarrow $T^{1} \in \mathcal{L}(\mathcal{Y}, \mathcal{I})$.
Ef: $T^{1} exists$, linear.
The continuity of $T^{1}(\Rightarrow) \forall U$ open $T(U)$ is open \Box
The continuity of $T^{1}(\Rightarrow) \forall U$ open $T(U)$ is open \Box
The 2: If \mathcal{X} \mathcal{Y} Benech & T : $\mathcal{X} \Rightarrow \mathcal{Y}$ has
 $G(T) = \begin{cases} (x, Tx) \in \mathcal{X} \times \mathcal{Y} \end{cases}$ Closed, then
 T is continuend.
Ef: T_{T} : $G(T) \longrightarrow \mathcal{X}$ $T_{T}(x, Tx) = x$
 $T_{E}: G(T) \longrightarrow \mathcal{Y}$ $T_{E}(x, Tx) = Tx$
 $G(T) \subset I \times \mathcal{Y}$ is a Basach specify Closedness.
 \Rightarrow T_{T}^{-1} is continuous. \Rightarrow
 $\chi = \frac{T_{T}^{-1}}{2} G(T) \xrightarrow{T_{T}} \mathcal{Y}$
is continuous.
 \Rightarrow $\chi \sim \mathcal{A} \rightarrow \mathcal{A}$ is clearly continuous.

 $T_{R}: \mathcal{X} \mathcal{Y} \to \mathcal{Y} \text{ is clearly Continuous}$ $\| T_{h}((x, y))\| = \| y \| \leq \| (x, y)\| = \sqrt{\| x \|_{+}^{2} \| y \|^{2}}$

$$\begin{array}{c} \overline{Thn} 3 \qquad \chi \quad & \text{Bernel} \quad & \mathcal{Y} - normed \quad & \text{K.S.} \\ \overline{A} \subset & \mathcal{G}(X, \mathcal{Q}), \\ . \quad & \text{If} \quad & \text{Sup} \quad \|T x \,\| < \infty \quad \forall x \in X, \text{ then} \quad & \text{Sup} \quad \|T \| < + \infty \\ \hline & \text{TEN} \end{array}$$

$$\begin{array}{c} \overset{\text{Pf}}{=} \qquad & \text{If} \quad & \text{Sup} \quad \|T x \| & \text{Sup} \quad \\ & \overline{TEN} \end{array}$$

$$\begin{array}{c} \overset{\text{Pf}}{=} \qquad & \underset{T \in \mathcal{N}}{=} \qquad & \text{If} \quad & \text{If} \quad \\ & \overline{TEN} \end{array}$$

$$\begin{array}{c} \overset{\text{Pf}}{=} \qquad & \underset{T \in \mathcal{N}}{=} \qquad & \text{If} \quad \\ & \text{Kinder in the supervised of the supe$$

Simple consequences:
$$\{f_i\}$$
 a sequence of $L^p(X)$.
Assume that $\forall l \in (L^p(X))^*$ $\{l(f_n)\}$ is bounded.
Then $\{lf_n | l_p\}$ is bounded. $(1 .$

 $l = \phi_{5} \implies l(f_{c}) = \phi_{5}(f_{c}) = \phi_{f_{c}}(s)$ $|\chi(f_{2})| = |\psi_{f_{2}}(g_{2})| < \infty$ $\implies || \phi_{f_{r}} || = || f_{n} ||_{p} \quad <+\infty \quad b_{y} \quad Th \quad 3$ For p=1, define $\phi_{f_n}(g) = \int f_n g = \bigvee g \in \mathcal{L}^{\infty}(x)$ $\left(\begin{array}{c} \phi^{t}(\ell) \\ \phi^{t}(\ell) \end{array} \right) \leq \| f_{\ell} \|_{\ell} \|_{\ell} \|_{\ell} \|_{\ell}$ Hence $\forall l \in (L'(x))^* \{l(f_n)\}$ is bounded implies that $| (\psi_{f_n}(s) | is bounded \implies \{ \| \phi_{f_n} \| \} is bounded.$ $\forall g \in L^{\infty}(X) \implies \| f_n \|_{L^{1}} is bounded.$ (Prop 613) (p= 00, crortes Similarly. But require uis semi-finite) 2) Remarks on (100)* X = [0, 1] $\mu = dm$, $\phi: f \rightarrow f_{(\circ)}$, $\forall f \in C([\circ, 1])$ $C([0,1]) \subset L^{\infty}([0,1])$ is a linear subspace. \$ is a bounded linear functional. > q can be extended to L ([0.1]) as a bounded linear dai \$ g E L' Such that $\phi(f) = \int g f$

Consider $f_n = \max\{1-nx, o\}$ $\phi(f_{\star}) = 1$ $\int g f_{4} \rightarrow a s \rightarrow a s \rightarrow b$ by DCT => Such & Can Not exist. \ ≠ 0 (3) Weak topology & weak * topology. Weak topology: Z a normed vector space. X its dual. The weak topology is generated by $f \in X^*$ $\bigcup_{i_1,\dots,i_r} := \left\{ x \mid \left| f_{i_1}(x) \right| < \varepsilon_{i_1} \dots \right. \mid f_{i_r}(x) \mid < \varepsilon_{i_r} \right\}$ Nonely are neighborhood of So] CX. Y XOEX {XO+ Ui, - ir } forms neighborhood basis there Weak - topology on Z: X* has a weak topology (as a normed vector space) But it has another topology : $\bigvee_{i_{1}\cdots i_{r}} := \begin{cases} f_{\xi} \\ \in \chi^{*} \end{cases} \quad |\widehat{x}_{i_{1}}(f)| < \xi_{1} \cdots |\widehat{x}_{i_{r}}(f)| < \xi_{i_{r}} \end{cases}$ generateds the neighborhood near OEX*