Evolution of topology; (II) (X, d) [] Enclidean topology -> mitric topology $(IR') d(x, y) = \sqrt{\sum_{j=1}^{2} (x_i - y_j)^2}$ open set is defined by B(a,r) -> (X, J) - general to polosy. $(\underline{\mathbb{M}})$ Baby Rudin did II & I. We shall move to (II) & (II) Baire Category Theorem is a result of II. [loveral in Rudin's Principle ch3 Exercise] This is a metric topology result! Why we need general to polosy? Consider X = [0, 1], X^{\times} is the maps: $[0, 1] \rightarrow [0, 1]$ $\{f_n\} \rightarrow f \quad p. u. \qquad f_n \to f_{(n)} \rightarrow f_{(n)}$ iff {f. } ~ f w.r.t the product topology [prop 4.12] The topology on X is the so-called product topology (See \$4.2) This topology Can not be given via a metric.

() Brive therem:
Let X be a complete buttic space.
(3) If U, is a sequene of open date subset of X
then
$$\bigcap_{h=1}^{n}$$
 U, is dense in X
(b) X is NoT a countable Union of non-where dense sets.
A is done if $\overline{A} = X$
A is nowhere dense if $\overline{A} \stackrel{\circ}{=} \neq$.
E5. U_n = $\mathbb{R}^n \setminus \{x_1, x_2 \cdots x_n\}$
Pf. First (b) follows from (c).
If $\chi = (\bigcup E_n) (\overline{E_n}) \stackrel{\circ}{=} \neq \Rightarrow (\overline{E_n})^n$ is dure.
Otherwise $\exists B(x_n, s) \ D(\overline{E_n}) \stackrel{\circ}{=} \neq \Rightarrow B(x_n, s) \subset \overline{E_n} \Rightarrow$
B(χ_n s) $c(\overline{E_n})^n$. A contradiction!
Then $\chi = \bigcup E_n \Rightarrow \psi = \square E_n^{(n)}$
 $D(\overline{E_n})^c = \phi$ But this contradicts (s)
For (b), we observe the following lemma,
If $\overline{B(X_n, R_n)} \subset \overline{B(X_n, Z_n)}$ are rested chied bells

$$\begin{split} & \xi \quad f_{n} \rightarrow \circ \ , \ Hen \qquad \bigcap_{n=1}^{n} \overline{B(x, n)} \neq \phi \\ & \underset{k=1}{\overset{\text{P}}{=}} \qquad d(x_{n}, x_{npn}) \leqslant r_{n} \implies \int x_{n} \int i \quad (auch_{9}) \\ & \underset{k=0}{\overset{\text{P}}{=}} \qquad d(x_{n}, x_{npn}) \leqslant r_{n} \implies fx_{n} \int i \quad (auch_{9}) \\ & \underset{k=0}{\overset{\text{P}}{=}} \qquad fx_{n} \in \overline{B(x, n)} \implies x \in \overline{B(x, n)} \qquad \forall n \\ =) \quad x \in \bigcap_{k=1}^{n} \overline{B(x, n)} \implies x \in \overline{B(x, n)} \qquad \forall n \\ =) \quad x \in \bigcap_{k=1}^{n} \overline{B(x, n)} \qquad \qquad \forall M \neq f, \text{ open} \qquad W \prod \bigcap_{k=1}^{n} U_{n} \neq \phi \\ \hline This \implies \bigcap_{n=1}^{n} U_{n} \quad is \quad deven \\ U, nw \quad is \quad open , \qquad since \quad U_{i} \quad is \quad deven \implies U_{i} nw \neq \phi \\ \implies \overline{B(x_{i}, n)} \subset U_{i} nW \qquad ris \frac{1}{2} \\ Now \quad we \quad consider \qquad B(x_{i}, n) nU_{2} \qquad open \quad \& \neq \phi \\ = ? \equiv \overline{B(x_{i}, n)} \subset B(x_{i}, n) nU_{2} \qquad ns \frac{1}{2^{2}} \\ \stackrel{\text{Powere }}{B(x_{i}, n)} \subset B(x_{i}, n) nU_{2} \qquad nested \quad balls. \\ \hline B(x_{i}, n) \subset U_{i} nW \qquad lemma \implies \bigcap_{j=1}^{n} \overline{B(x_{j}, n)} \neq \phi \\ \hline \overline{B(x_{j}, n)} \subset (\prod_{k=1}^{d} U_{k}) nW \qquad \Rightarrow \exists x \in \left(\bigcap_{k=1}^{d} U_{k}\right) nW. \\ \end{bmatrix}$$

(2) Open mapping theorem: If
$$T: X \rightarrow Y$$
 insurjection
Lowed linear map from $X \pm Oy$ with $X & G$ are Baned.
The T is an open map.
I.e. $\forall \cup open T(U) \subset Q$ is open.
If: Reduction: $s \in \text{First} \pm \text{shew} T(B(0,0) \supset B(0, S))$ for
Some Spo.
To prove $T(U)$ is open, $\forall y_{0} = T(X_{0}) = y_{0} \in T(U)$, $X \in U$
 $\Rightarrow = B(X_{0}, X_{0}) \subset U \Rightarrow T(B(X_{0}, X)) = T(X_{0}) + T(B(0, X))$
 $= T(X_{0}) + \lambda T(B(0, 1)) \supset Y_{0} + \lambda B(0, S) = B(Y_{0}, XS)$
Nowly $B(Y_{0}, S) \subset T(U)$.
 $\frac{1}{y_{0}}$
 $\frac{1}{y_{$

$$\begin{array}{c} \overrightarrow{} & T(B(0,\lambda_{0})) \text{ is dealer in } B(0,T_{1}) \\ \overrightarrow{} & T(B(0,1)) \text{ is dealer in } B(0,T_{1}) = B(0,Y) \\ N_{0} & T(B(0,c)) \text{ is dealer in } B(0,ct) \\ (*) \\ \overrightarrow{} \\ \overrightarrow{}$$

$$| \underbrace{u}_{x_{1}} \widetilde{z}_{x_{1}} | = \circ \implies \qquad u = \overline{I} \left(\underbrace{\sum_{i=1}^{\infty} x_{i}}_{i} \right) = \overline{I} \left(\underbrace{x}_{i} \right)$$

$$2 \in B[0, 2].$$