Эexpusition in HLP "inequalities" (slightly different)
\exists Abstraction in Katznelson's "An Intro to Hor Anclysic" (Formulated more abstractly)
It is well-known
$\log _{g}\|f\|_{p}$ is monotone increasing in p
$\&$ convex in $\frac{1}{p}$
Namely $\quad \log \|f\| \frac{1}{\frac{t}{p_{0}}+\frac{1-t}{p_{1}}} \leqslant t \log \|f\|_{p_{0}}+(1-t) \log \|f\|_{p_{1}}$

$$
\forall t \in[0,1]
$$

Ries3-Thorin theorem Say, this comexity also shows in the operator norms for $T: \quad L^{P_{0}} \longrightarrow L^{Q_{0}}$

Key component:
Hademerd three lime theorem:

$$
|\phi(z)| \leqslant M_{0}^{1-t} M_{1}^{t}
$$

$\forall \quad z=t+i$, $\quad \phi$ holomorphic in
the strip. $\quad M_{0}=\sup |\phi(z)| \quad M_{R_{2}=0}=\sup |\phi(z)|$

$$
\operatorname{Rez}=0 \quad \operatorname{Re} z=1
$$

prof alsonses Theorem 2.10. \& 6.14 of Folland.

$$
\|T f\|_{\underline{q}_{t}}=\sup _{\substack{\|g\|_{1}^{q} 1 \\ q_{t}}}\left|\int T f \cdot g\right| \leftarrow \underline{\text { theorem } 6.14}
$$

Hence we reduce the theorem to show

$$
\begin{equation*}
\left\|\int T f \cdot g\right\| \leqslant M_{0}^{1-t} M_{1}^{t} \quad \forall f \in L^{P_{t}} \tag{*}
\end{equation*}
$$ with $\|f\|_{p_{t}}=1 \quad\|g\|_{q_{t}^{\prime}}=1 \quad g \in L^{I_{t}}$

Theorem 2.10 reduce (*) to check it fur step functions.

$$
f=\sum c_{j} \cdot x_{E_{j}} \quad q=\sum d_{n} x_{F_{h}}
$$

$\left\{E_{j}\right\}\left\{F_{k}\right\}$ disjoint.

$$
\begin{align*}
& \|f\|_{p_{t}}=\left(\sum\left|c_{j}\right|^{p_{t}} x_{E_{j}}\right)^{\frac{p_{t}}{p_{t}}} \quad \mu\left|E_{j}\right| \\
& 1=\|f\|_{p_{t}} \Leftrightarrow \sum\left|c_{j}\right|^{p_{t}} \underline{\underline{E}}_{j} \mid=1 \tag{1}\\
& \text { similarly } \quad 1=\| q_{q_{t}^{\prime}} \quad \Leftrightarrow \quad \sum\left|d_{n}\right|^{q_{t}^{\prime}}\left|F_{t}\right|=1 \tag{2}
\end{align*}
$$

Consider:

$$
\begin{array}{ll}
\alpha(z)=\frac{1-z}{p_{0}}+\frac{z}{p_{1}} & \alpha(t)=\frac{1}{p_{z}} \\
\beta(z)=\frac{1-z}{q_{0}}+\frac{z}{q_{1}} & \beta(t)=\frac{1}{q_{t}}
\end{array}
$$

$1-\beta(t)=\frac{1}{q_{t}^{1}}, \quad q^{\prime}$ is the dual power of q.

$$
\begin{array}{lll}
f_{z}:=\sum\left|c_{j}\right|^{\frac{\alpha(z)}{\alpha(t)}} e^{i \theta_{j}} x_{E_{j}} & c_{j}=\left|c_{j}\right| e^{i \theta_{j}} \\
g_{t}:=\sum\left|d_{k}\right|^{\frac{1-\beta(z)}{1-\beta(t)}} e^{i \psi_{k}} x_{F_{1}} & d_{k}=\left|d_{k}\right| e^{i \eta_{k}}
\end{array}
$$

on $z=$ is

$$
\begin{aligned}
& \alpha(i s)=\frac{1-i s}{p_{0}}+\frac{i s}{p_{1}}=\frac{1}{p_{0}}+F\left(\frac{s}{p_{0}}-\frac{s}{p_{0}}\right) \\
& \beta(i s)=\frac{1}{q_{0}}+F\left(\frac{s}{q_{1}}-\frac{s}{q_{0}}\right) \\
& 1-\beta \text { (is })=1-\frac{q_{0}}{q_{0}}-F\left({ }^{\downarrow}\right) \\
& =P(t) \int \begin{array}{l}
\text { Here we used } \\
\left|{ }_{c j}\right|^{\text {Hr }}=e^{A} \ln \left|c_{j}\right| \gamma \\
\gamma \in \mathbb{R} \text { has norm } \mid
\end{array}
\end{aligned}
$$

Hence $\left\|f_{i s}\right\|_{p_{0}}^{p_{0}}=\quad \sum\left|c_{j}\right|^{\frac{1}{\alpha(t)}}\left|E_{j}\right|=1$, by (1)
\& $\left.\left\|g_{i s}\right\|_{q_{0}^{\prime}}^{q_{0}^{\prime}}=\sum\left|d_{h}\right|^{\frac{1}{1-\beta(t)}} \right\rvert\, q^{\prime}(t)$
Similarly $\left\|f_{1+i s}\right\|_{P_{1}}=1$, because

$$
\begin{aligned}
\alpha(1+i s) & =\frac{1-1-i s}{p_{0}}+\frac{1+i s}{p_{1}} \\
& =\frac{1}{p_{1}}+\sqrt{-1}\left(\frac{s}{p_{1}}-\frac{s}{p_{0}}\right) \\
\frac{\alpha(1+i s)}{\alpha(t)} & =\frac{1}{p_{1}} \frac{1}{\alpha(t)}=\frac{p_{t}}{p_{1}}
\end{aligned}
$$

$$
\left\|f_{(1+v s)}\right\|_{p_{1}}^{p_{1}}=1 \quad\left\|g_{(+i s)}\right\|_{q_{1}^{\prime}}^{q_{1}^{\prime}}=1
$$

Collecting them we have $\quad\left\|f_{\text {is }}\right\|=1=\left\|g_{p_{0}}\right\|_{q_{\text {. }}}$

$$
\left\|f_{\text {His }}\right\|_{p_{1}}=1=\left\|g_{\text {His }}\right\|_{q_{1}}
$$

Hence $\left|\int\left(T f_{i s}\right) \cdot g_{i s}\right| \leqslant M_{0}$

$$
\left.\mid \int\left(T f_{1 t i s}\right) g_{1 t i s}\right) \leqslant M_{1}
$$

By Hörlder inequality \& the assumption on
$T: L^{p_{0}} \longrightarrow L^{g_{0}}$ are bounded with Mo M.

$$
L^{p_{1}} \rightarrow L^{q_{1}}
$$

Now we consider

$$
\begin{aligned}
\phi(z)= & \int\left(T f_{z}\right) g_{z} \\
= & \sum\left|c_{j}\right|^{\frac{\alpha(z)}{\alpha(t)}}\left|d_{h}\right|^{\frac{t-\beta(z)}{1-\beta(t)}} \int\left(T x_{E_{j}}\right) x_{F_{k}}
\end{aligned}
$$

holomorphic in z

We may apply 3-line theorem \Rightarrow

$$
|\phi(t)| \leqslant \max _{z=t+i s}|\phi(z)| \leqslant M_{0}^{1-t} M_{1}^{t}
$$

Sin le $|\phi(i s)| \leqslant M_{0} \quad|\phi(1+i s)| \leqslant M_{1}$

But

$$
\begin{aligned}
& \phi(t)=\int T f_{t} g_{t} \\
& =\int T f \cdot g
\end{aligned}
$$

Namely $\Rightarrow\left|\psi_{(t)}\right| \leqslant \quad M_{0}^{1-t} M_{1}^{t}$.
This proves the result.
MY: $\sim^{\prime} L^{\prime} \longrightarrow L^{\infty}$
with $M_{0}=1$
$p_{0}=1 \quad q_{0}=\infty$

$$
L^{2} \rightarrow L^{2}
$$

$$
M_{1}=1 \quad P_{1}=2 \quad g_{1}=2
$$

$$
\begin{aligned}
& p \in\left[\begin{array}{ll}
1 & 2
\end{array}\right] \quad \frac{1}{p_{t}}=\frac{1-t}{1}+\frac{t}{2}=1-\frac{1}{2} t \quad \begin{array}{l}
\text { Namely } \\
\frac{1}{p}=1-\frac{t}{2}
\end{array} \\
& \frac{1}{q_{t}}=\frac{1-t}{q_{0}}+\frac{t}{2}=\frac{t}{2}=1-\frac{1}{p}
\end{aligned}
$$

Hence: $\wedge_{:} L^{p} \longrightarrow L^{q=p^{\prime}}$
satisfies the estimate $\left\|\hat{f}_{L^{p}} \leqslant\right\| f \|_{L^{p}} \quad \forall \quad 1 \leqslant p \leqslant 2$.

