(1) Uniqueness
Theorem,
$$f \in L^{2}$$
, $\hat{f} = 0$ a.e. $\Rightarrow f = 0$, and
 $Pt.$ $n=1$ Case
Let $\hat{J}(a) = \int_{-\infty}^{a} f(t) dt$. It sufficients show $f(a) = 0$
 $\int_{-\infty}^{\infty} e^{-2\pi i \pi x t} f(t)^{dt} = 0$ a.e. $\int_{-\infty}^{a} e^{-2\pi i \pi x (t-a)} dt$
 $= -\int_{a}^{\infty} e^{-2\pi i \pi x (t-a)} dt$ Rex + till x
 $F_{a}(x) \Rightarrow He LHS \Rightarrow \forall In x > 0$ $F_{a}(x)$ is
 H the ortends to C
 L for $In x < 0$ it is substice bounded
 $F_{a}(x) = Coast$ by Liouville theorem.
 $F_{a}(b) = \hat{J}(a)$
 $F_{a}(Fis) = \int_{-\infty}^{a} e^{-2\pi i \pi (t-a)} f(t) dt$
 $e^{sx (t-a)} f(t) \Rightarrow 0$ as $s \Rightarrow t \approx \Re /e^{-\pi i \pi (t-a)} f(t) dt$
 $f(x) = f(x) = Coast$ by Liouville theorem.
 $F_{a}(b) = \hat{J}(a)$
 $F_{a}(Fis) = \int_{-\infty}^{a} e^{-2\pi i \pi (t-a)} f(t) dt$
 $f(x) = f(x) = f(x) = f(x) = f(x) = f(x)$ f(x) f(x) f(x) f(x) = f(x) = f(x) = f(x)
 $f(x) = f(x) = f(x)$

General case follows by view
$$3_{2} - 3_{n} = 5 - 5$$
 as
parameters.
(2) Inversion in L'
 $f'(x) := \hat{f}(-x) = \int e^{2\pi F(-x, 5)} f(5) df$
Theorem: If $f \in L'$, $\hat{f} \in L' \Rightarrow (f)^{V} = f$ a.e.
Pf: If $\hat{f} \in L'$ $(\hat{f})^{V} \in C_{\circ}(\mathbb{R}^{n})$.
(i) $\int \hat{f} \hat{q} = \int f \hat{g}$
LHS = $\int e^{-2\pi H^{2}(4)} f(4)$
RHS = $\int f(4) \int e^{2\pi H(4)} g(5)$
RHS = $\int f(4) \int e^{-2\pi H(4)} f(4)$
 $\hat{f} \in L^{\infty}$, Hence the integretation all make serve.
 \hat{g}
(i) Recall $\hat{g}^{E} = \frac{1}{E^{2}} e^{-\frac{\pi 151}{E}} = \hat{g}^{1}_{e}(5-1)^{*}$
Hence $(\hat{g}^{*}_{e} + \hat{f}) = \int \hat{g}^{*}_{e}(x,y) f(4)$

$$= \int e^{iF \cdot 2\pi \cdot (x, s)} g^{\xi}(s) f(y) dy$$

into variable y

$$\left(\begin{array}{c} N_{chuly} \\ S_{c} \end{array} \right) \int e^{-2eFi} \langle s \rangle \langle s \rangle \left(e^{2\pi Fi} \langle s \rangle g^{\xi}(s) \right) ds$$

$$= \int e^{2\pi Fi} \langle x \rangle g^{\xi}(s) f(s) ds$$
Namely, $(f_{i}^{t} * f)(x) = (g^{\xi} \cdot \hat{f})^{\vee}(x) \quad (*)$
Teking $\xi \rightarrow 0 \Rightarrow LHS = f(x)$ are
RHS = $(\hat{f})^{\vee}(x)$.
Same result holds for $f \in L^{2}$ by approximation
& (*) holds for $f \in L^{2}$
Build of ff - Young inequality.
Theorem for $isp \leq 2$, $f \in L^{p} \quad A: f \rightarrow \hat{f}$
is a bounded linear operator from $L^{p} \rightarrow L^{2}$
 $\frac{1}{2} + \frac{1}{p} = 1$ Such that
 $I \int H_{2} \leq II \int I_{L}^{p}$

We shall use Riesz-Thorin interpolation theorem. $\overline{f}: \quad [\overset{k}{\longrightarrow}] \xrightarrow{2}$ $\frac{1}{p} = \frac{1-t}{p_0} + \frac{t}{p_1}$ $| \stackrel{P_i}{\longrightarrow} | \stackrel{\mathfrak{I}}{\longrightarrow} |$ $\frac{1}{9} = \frac{1}{9} + \frac{t}{9}$ are bounded with M. M. $\| T f \|_{2_{p}} \leq M_{o} \| f \|_{p_{o}} \quad \| T f \|_{2_{i}} \leq M_{i} \| f \|_{p_{i}}$ \rightarrow $\|T S \|_{q} \leq M_{b}^{b t} M_{i}^{t} \|S\|_{q}$ Some convexity in the norm of a linear operator. The proof needs three-line Lenma. = A generalization by Marcinkiewicz ______ involve weak L^r HY is a special case of Riesz-Thorin [see next] (4) Polarization formula: $(f, f) = (\widehat{f}, \widehat{f}) \Rightarrow$ $(f,g) = \frac{1}{4} \left\{ (f+g,f+g) + i(f+ig,f+ig) - (f-g,f-g) \right\}$ $\begin{array}{rcl}
(5) &=& 4 \left(\begin{array}{c} -i \left(5 - i \right) & 5 \\ -i \left(5 - i \right) & 5 \\ \end{array} \right) \\
&=& \frac{1}{4} \left\{ \begin{array}{c} (\widehat{5} + \widehat{5} & \widehat{5} + \widehat{5}) + i \left(\widehat{5} + i \widehat{5} & \widehat{5} + i \widehat{5} \right) \\ &=& -i \left(\widehat{5} - i \widehat{5} & \widehat{5} - i \widehat{5} \right) \right\} \\
\end{array}$ $=(\widehat{j},\widehat{j})$ Hence if In E ((JZ) II fn-fll, - > 0 $\|\widehat{f}_n - \widehat{f}_m\|_{r^2} \to 0$ as $n, m \to \infty$ Li \widehat{f}_n is defined as \widehat{f} Easy to check that it is unique.