By the fact
$$\lambda \perp_{x} \equiv A$$
 $\lambda(A) = 0$. & $u(A^{t}) = -$
We only need to Show $\forall x \in A$
 $\lim_{Y \neq 0} \frac{\lambda(B_{t})}{|B_{t}|} \rightarrow 0$ as $r \rightarrow 0$ are $x \in A$
Let $F_{t} := \begin{cases} x \in A \ t \xrightarrow{r} \frac{\lambda(B_{t})}{|B_{t}|} > t \end{cases}$
 $\forall x \in F_{t} \equiv B_{t}(x) \qquad \lambda(B_{t}(x)) > t |B_{t}(x)|$
Now we consider the covering of F_{t} by $B_{t}(x)$
Let $V := \bigcup_{x \in F_{t}} B_{t}(x)$
 $\forall x \in (n(V)) \qquad t \in F_{t}(x)$
By the covering Lemon $\exists B_{t}(x)$
 $C < 3^{n} \sum_{j=1}^{r} |B_{t}(x_{j})| \leq 3^{n} k \sum_{j \in I} (B_{t}(x_{j}))$
 $B_{t}(x_{j}) < t \in F_{t}(x)$
On the other hand $\lambda(A) = 0 \implies \forall \epsilon > 0, \exists U_{t} > A$
 $\lambda(U_{t}) < \epsilon$
Now we may choose $B_{t}(C \cup in)$ the clove step
 $\Rightarrow c < 3^{n} k\epsilon \Rightarrow 0 = m(V) \ge n(F_{t}).$

(2)
$$X = LCH = C_{1}(X)$$
 is dence in $L^{1}(X, n)$ where $M = Redon$
If $\forall f \in L^{p}(X, n)$.
 $\exists q_{n} = Single = (g_{n}| \in |g_{nn}| \in ... \leq |f|)$
 $\Re = \int_{n \to \infty}^{\infty} \int |g_{n}|^{p} = \int |f|^{p}$
Moreover $|f - q_{n}|^{p} \leq 2^{p}(|f|^{p} |R|^{p})$
 $\Rightarrow \lim_{n \to \infty} \int |f - q_{n}|^{p} = C$
Nonedy Simple functions are dence in $L^{p}(X, n)$.
 $g = \int_{i=1}^{p} c_{i} \chi_{E_{i}}$ Ei disjoint
 $W_{E} = M(E) < \infty$. $\exists U > E = M(U) < M(E) + E$.
 $\frac{Simehfts}{1} = K < E = M(K) > M(E) - E$
The conside $K < f < U$
 $\Rightarrow \int |f - \chi_{E}|^{q} \leq \sum_{i=1}^{p} q_{i} well$
 $\Rightarrow \|f - \chi_{E}\|_{q} \to 0$

(3) Lusin's theorem:
$$\int is measurable u.rt. u - q. Rydon
X LCH
Measure.
Assume that $u(\{\{\{i\} \neq 0\}\}) < +\infty$. Then $\forall \in 70$
 $\exists \phi \in C_{1}(X)$ such that $u(\{\{\phi \neq f\}\}) < \epsilon$
 $X If f is bounded ϕ can be chosen such that
 $\|i\phi\|_{U} \leq \|if\|_{U}$, nemely $\sup_{X \in X} |i\phi|_{T}$
 $WL (f assure f is bounded)
If $\sum_{i=1}^{n} \int_{i=1}^{n} \int_{i=1}^{n} \int_{i=1}^{n} g_{i}e C_{i}(X)$.
Thus $\{g_{i}\}$ still write as $g_{n} \rightarrow f$ are
 $\Rightarrow \exists A \subset E := \{x \mid |f(\omega)| \neq 0\}$
Such that $g_{n} \Rightarrow f$ on A is $u(E\setminus A) < s_{i}$
Now find (i) KCA compact $u(A\setminus K) < s_{i}$
 $|i\psi| \cup D \in ope \quad a(U\setminus E) < \epsilon$
 $\Rightarrow f$ is continuents in K.
Now we use Trietze extension then: f can be extended to a function
 X such that $h = 0$ outside U . $h \in C_{i}(X)$
To get the desired estimate one simply need to "chop" h .
 $\beta(i2) = \{ \|f\|_{U} = if |i2| > \|f|_{U}$
 $d = \beta(h)$ Satisfies $\|f|_{U} \leq 1 \leq U_{i}$$$$$