(1) Hahn-Banach Thu for linear spaces over Emploxe

$$\chi$$
. Complex vector space.
 $p(x)$; is a semi-norm: Nlamely $p, \chi \rightarrow [0,\infty)$
(i) $p(x+y) = p(x) + p(y)$
(ii) $p(\lambda x) = |\lambda| p(x)$.
Theorem: If f is a complex linear functional on $M \subset X$
i.e. f: $\chi \rightarrow C$ f($\lambda x+uy$) = $\lambda f(x) + uf(y)$
 M being a complex vector subspace.
Assume that $|f(x)| \leq P(x)$. $\forall x \in M$
Then \exists an extension of four satisfies
 $f(x) = F(x) \quad \forall x \in M$
 $\& |F(x)| \leq P(x)$.
Remark: The assumption is slightly stronger.
Pf: $f(x) = u(x) + iv(x)$.
But f is linear $f(ix) = if(x) = iu(x) + (-i)v(x)$
 $u(ix) + iv(ix) \implies v(x) = -u(ix)$
Nextly $f(x) = u(x) - iu(ix)$.
By the assumption $|u(x)| \leq |f(x)| \leq p(x)$.
 \Rightarrow The real HBT applies $\Rightarrow \exists U$ such that

Def:
$$x \in K$$
, is interior, iff $\forall y \in X$. $\exists \xi_y$
S.t. $\forall k \mid < \xi_y, x + t \cdot y \in K$ [This is a finer topology]
Defn: Assume $o \in K$ is an interior point.
 $P_K(x) \doteq inf q$, $a > o$. $\frac{x}{q} \in K$.
 $P_K(x)$ is called the Sange function

(3) Details on the gauge function Yy Ziy tyek if Itle ig Itle Hence $P_{\kappa}(y) < \infty$ $P_{k}(x+y) \leq P_{k}(x) + P_{k}(y)$ By definition, $\forall \epsilon > 0$. $\frac{x}{\alpha} \in K$ if $\alpha \leq P_{K}(x) + \epsilon_{\chi}$ & Lek if b Pk(y)+ E Then $\frac{q}{a+b}$. $\frac{x}{a}$ + $\frac{b}{a+b}$ $\frac{y}{b}$ = $\frac{x+y}{a+b}$ $\in K$ $\Rightarrow \qquad a+b \ge Pr^{(x+y)}$ $\Rightarrow P_{K}(x+y) \in P_{K}(x) + P_{K}(y) + \varepsilon \quad \forall \varepsilon > 0$ We have (b) (a) is obvious since $\frac{\lambda y}{\lambda a} \in K$ iff $\frac{y}{a} \in K$ () $x \in K \Rightarrow P_{K}(x) \leq 1$ $Tf x \text{ is an interior Point } x + t \times \in K \text{ for } t < r \leq s$ $Tf x = (1+t) \times \in K \Rightarrow \frac{x}{1-5} \in K \text{ with } \frac{1}{1-5} = H t$ Since TEK $\Rightarrow P_{\kappa}(x) \leq |-\delta| < |$