(1) Hahn-Banach Thu for linear spaces over complexes
X Complex vector space.
$p(x)$: is a semi-norm: Namely $p: X \rightarrow[0, \infty)$
(i) $p(x+y) \leqslant p(x)+p(y)$
(ii) $\quad p(\lambda x)=|\lambda| p(x)$.

Theorem: If f is a complex linear functional on $M \subset X$ i.e: $f: x \rightarrow \mathbb{C} \quad f(\lambda x+\mu y)=\lambda f(x)+\mu f(y)$
M being a complex vector subspace.
Assume that $\quad|f(x)| \leqslant p(x) . \quad \forall x \in M$
Then \exists an extension $F(x) \circ f f(x)$ satisfies

$$
\begin{aligned}
& \quad f(x)=F(x) \quad \forall x \in M \\
& \& \quad|F(x)| \leqslant p(x)
\end{aligned}
$$

Remark: The assumption is slightly stronger.
Pf: $\quad f(x)=u(x)+i v(x)$.
But f is linear

$$
\begin{array}{rlr}
f(i x)=i f(x) & =i v(x)+(-1) v(x) \\
u(i x)+i v(i x) & \Rightarrow \quad v(x)=-u(i x)
\end{array}
$$

Namely $\quad f(x)=u(x)-i u(i x)$.
By the assumption $|u(x)| \leqslant|f(x)| \leqslant p(x)$.
\Rightarrow The real HBT applies $\Rightarrow \exists \cup$ such that

$$
\begin{aligned}
& U(x+y)=U(x)+U(y) \quad \& \\
& U(\lambda x)=\lambda W(x) \quad \forall \lambda \in \mathbb{R}
\end{aligned}
$$

Let $F(x)=U(x)+(-i)()(i x)$

$$
i x \in M \text { if } M \subset x
$$

Then $\left.F(x)\right|_{\mu}=u(x)+(-i) u(i x)=f(x)$ is a complex-linear Subspace

$$
F(i x)=\quad U(i x)-i v(-x)=i[U(x)-i U(i x)]=i F(x)
$$

Namely F is i-linear as well.

$$
\begin{gathered}
{[F(x+y)=U(x+y)+(-i) U(i x+i y)=F(x)+F(y)} \\
F(\lambda x)=\lambda(U(x)-i U(i x)]
\end{gathered}
$$

Now

$$
\begin{aligned}
& |F(x)|=e^{-i \theta} F(x)=F\left(e^{-i \theta} x\right)=U\left(e^{-i \theta} x\right) \\
& \leqslant P=\operatorname{crg}(F(x))
\end{aligned}
$$

[Here is where we used $p(\lambda x)=\lambda \lambda p(x)$].
(2) Hyperplane Separation theorem for convex set.

Thu: Let K be a nonempty convex subset such that every $x \in K$ is an interior (in the sense of Lax). Let $y \in K$ Then $\exists l$, linear function l $l(x)<c, \quad \forall x \in K$.

$$
l(y)=c
$$

Def: $\quad x \in K$, is interior, iffy $\forall y \in X \quad \exists \varepsilon_{y}$ S.t. $\forall|t|<\varepsilon_{y}, x+t y \in K \quad$ [This is a finer topology]

Defn: Assume $0 \in K$ is an interior point.

$$
P_{K}(x) \doteqdot \inf a, \quad a>0, \quad \frac{x}{a} \in K
$$

$P_{K}(x)$ is called the gauge function
Pf: Key Facts:
$\left\{\begin{array}{l}\text { (a) } P_{K}(x) \text { is homogeneous of degree } 1\end{array}\right.$
(b) $P_{k}(x+y) \leqslant P_{k}(x)+P_{k}(y)$
(c) $x \in K \Rightarrow P_{K}(x) \leq 1$, \& x is interior iff $P_{K}(x)<1$

Now let l : $\langle y\rangle$ with $\quad l(y)=1 \quad l(\lambda y)=\lambda$
Then $l(\lambda y) \leqslant P_{k}(\lambda y)$, since $l(y)=1 \quad P_{k}(y) \geqslant 1$
$\left.\begin{array}{ll}l\left(\lambda_{y}\right) & \text { for } \lambda \leqslant 0 \Rightarrow \quad l\left(\lambda_{y}\right) \leqslant 0 \quad \& \quad P_{k}\left(\lambda_{y}\right) \geqslant 0 \\ \lambda \geqslant 0 \quad l\left(\lambda_{y}\right)=\lambda & P_{k}\left(\lambda_{y}\right)=\lambda P_{k}(y) \geqslant \lambda\end{array}\right]$

$$
\forall \lambda \geqslant 0 \quad l\left(\lambda_{y}\right)=\lambda \quad p_{k}(\lambda y)=\lambda p_{k}(y) \geqslant \lambda
$$

By Hahn-Bancich. $\Rightarrow l$ can be extended to x with

$$
\ell(x) \leqslant P_{k}(x)
$$

Hence $\quad l(x) \leqslant p_{k}(x)<1 \quad \forall x \in K$.
Now we prove (c) - (c) for the gauge function
(3) Details on the gauge function
$\forall y \quad \exists \varepsilon_{y} \quad t y \in K$ if $|t|<\varepsilon_{y}$
Hence $\quad P_{K}(y)<\infty$

$$
P_{k}(x+y) \leqslant P_{k}(x)+P_{k}(y) .
$$

By definition, $\forall \varepsilon>0 . \quad \frac{x}{a} \in K \quad$ if $a \leqslant P_{k}(x)+\varepsilon / 2$

$$
\& \quad \frac{y}{b} \in K \text { if } \quad b \leqslant P_{k}(y)+\frac{\varepsilon}{2}
$$

Then $\frac{a}{a+b} \cdot \frac{x}{a}+\frac{b}{a+b} \frac{y}{b}=\frac{x+y}{a+b} \in K$

$$
\begin{array}{ll}
\Rightarrow \quad a+b \geqslant P_{k}(x+y) \\
\Rightarrow \quad P_{k}(x+y) \leqslant P_{k}(x)+P_{k}(y)+\varepsilon \quad \forall \varepsilon>0
\end{array}
$$

We have (b)
(c) is obvious since $\frac{\lambda y}{\lambda a} \in K$ iff $\frac{y}{a} \in K$

$$
\operatorname{sinec} \frac{x}{T} \in K
$$

(c) $x \in K \Rightarrow P_{K}(x) \leqslant 1$

If x is an interior point $\Rightarrow \quad x+t x \in K$ for $|t|<\varepsilon$

$$
\left\{\begin{array}{l}
\text { If } x \text { is an interior Point } \\
\text { The }(1+t) x \in K \Rightarrow \frac{x}{1-\delta} \in K \text { with } \frac{1}{1-\delta}=1+t \\
\Rightarrow P_{K}(x) \leqslant 1-\delta<1 .
\end{array}\right.
$$

$$
\left.x+\bar{t} y=\left(1-\varepsilon^{\prime}\right) \underline{\left(\frac{x}{1-\varepsilon^{\prime}}\right)}+\varepsilon_{11}^{\prime}\left(\frac{\bar{t}}{\varepsilon_{1}}\right) y\right) \in K \frac{\bar{t}}{<\varepsilon_{y}}<\varepsilon_{y} \text { is enough. }
$$

