
Lecture 23: Gauss’ Theorem or The divergence theorem. states that if
W is a volume bounded by a surface S with outward unit normal n and F =
F1i + F2j + F3k is a continuously differentiable vector field in W then

∫∫

S

F · n dS =
∫∫∫

W

div F dV, where div F =
∂F1

∂x
+

∂F2

∂y
+

∂F3

∂z
.

Let us however first look at a one dimensional and a two dimensional analogue.
A one dimensional analogue if the First Fundamental Theorem of Calculus:

f(b)− f(a) =
∫ b

a

f ′(x) dx.

A two dimensional analogue says that if D is a region in the plane with boundary
curve C and n = (n1, n2) is the outward unit normal to C, then

∫

C

F1n1 + F2n2 ds =
∫∫

D

(∂F1

∂x
+

∂F2

∂y

)
dA

where ds is the arclength. (This is in fact equivalent to Green’s Theorem.)
Ex. Find flux of F = 2x i + y2 j + z2 k out of the unit sphere S.
Sol. By the divergence theorem we have with B the unit ball
∫∫

S

F · n dS =
∫∫∫

B

div F dV =
∫∫∫

B

(2 + 2y + 2z) dV

=
∫∫∫

B

2dV +
∫∫∫

B

2ydV +
∫∫∫

B

2zdV = 2Vol(B) + 0 + 0 = 2
4π

3

since the last two integrals vanishes because the region is symmetric under replacing
y by −y (respectively z by −z) but the integrand changes sign.

Ex. Find flux of F = x i + y j− 2z k out of the unit sphere.
Sol. By the divergence theorem the flux is equal to the integral of the divergence

over the unit ball. Since div F = 0 it follows that the volume integral vanishes and
by the divergence theorem the flux therefore vanishes.

Let Bε be a ball of radius ε and let Sε be its surface. Then
∫∫

Sε

F · n dS =
∫∫∫

Bε

div F dV

By the mean value theorem for integrals the right hand side is equal to the volume
of the box Bε times div F at some point in the box so we get the interpretation of
the divergence that we announced in section 3.3:

Flux of F out through Sε = Vol(Bε) div F

where div F is evaluated at some point in Bε. Hence

div F = lim
ε→0

Flux of F out through Sε

Vol(Bε)

1
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Proof of the divergence theorem for convex sets.
We say that a domain V is convex if for every two points in V the line segment
between the two points is also in V , e.g. any sphere or rectangular box is convex.

We will prove the divergence theorem for convex domains V . Since F = F1i +
F3j+F3k the theorem follows from proving the theorem for each of the three vector
fields F1i, F2j and F3k separately. The theorem for the vector field F3k states that

∫∫

S

(F3k) · n dS =
∫∫∫

D

∂F3

∂z
dV

Since V is convex we can write V = {(x, y, z); f1(x, y) ≤ z ≤ f2(x, y), (x, y) ∈ D}.
Then S consists of two parts S1 = {(x, y, z); z = f1(x, y), (x, y) ∈ D} and

S2 = {(x, y, z); z = f2(x, y), (x, y) ∈ D}. We have

∫∫∫

V

∂F3

∂z
dzdxdy =

∫∫

D

∫ f2(x,y)

f1(x,y)

∂F3

∂z
dz dxdy

=
∫∫

D

F3

(
(x, y, f2(x, y)

)
dxdy −

∫∫

D

F3

(
(x, y, f1(x, y)

)
dxdy

We know that dxdy = k ·n dS on S2 and dxdy = −k ·n dS on S1 so (5.1.4) follows.
Ex. Gauss law Let F = −(xi+yj+zk)/(x2 +y2 +z2)3/2. Let Sa be the sphere

of radius a centered at the origin. Find the flux of F out of Sa

Sol. A calculation shows that div F = ... = 0, when |x| 6= 0. Hence by the
divergence theorem the flux is

∫∫
Sa

F ·n dS =
∫∫∫

Ba
div F dV , where Ba is the ball

of radius a centered at 0. From this we deduce that the flux is 0 but this answer
is wrong! In fact the outward unit normal to Sa = {(x, y, z); x2 + y2 + z2 = a2} is
n = (xi + yj + zk)/(x2 + y2 + z2)1/2. It therefore follows that

∫∫

Sa

F · n dS =
∫∫

Sa

dS

x2 + y2 + z2
=

∫∫

Sa

1
a2

dS =
1
a2

Area (Sa) =
1
a2

4πa2 = 4π

Therefore there appears to be a contradiction and we conclude that the divergence
theorem is not valid in this case. In fact F to be continuously differentiable and
bounded in V and F is unbounded at the origin. We also remark that the flux out
of any region of F is 4π if the region contains the origin and 0 if the region does
not contain the origin.


