Lecture 23: Gauss' Theorem or The divergence theorem. states that if W is a volume bounded by a surface S with outward unit normal \mathbf{n} and $\mathbf{F}=$ $F_{1} \mathbf{i}+F_{2} \mathbf{j}+F_{3} \mathbf{k}$ is a continuously differentiable vector field in W then

$$
\iint_{S} \mathbf{F} \cdot \mathbf{n} d S=\iiint_{W} \operatorname{div} \mathbf{F} d V, \quad \text { where } \quad \operatorname{div} \mathbf{F}=\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{2}}{\partial y}+\frac{\partial F_{3}}{\partial z} .
$$

Let us however first look at a one dimensional and a two dimensional analogue. A one dimensional analogue if the First Fundamental Theorem of Calculus:

$$
f(b)-f(a)=\int_{a}^{b} f^{\prime}(x) d x
$$

A two dimensional analogue says that if D is a region in the plane with boundary curve C and $\mathbf{n}=\left(n_{1}, n_{2}\right)$ is the outward unit normal to C, then

$$
\int_{C} F_{1} n_{1}+F_{2} n_{2} d s=\iint_{D}\left(\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{2}}{\partial y}\right) d A
$$

where $d s$ is the arclength. (This is in fact equivalent to Green's Theorem.)
Ex. Find flux of $\mathbf{F}=2 x \mathbf{i}+y^{2} \mathbf{j}+z^{2} \mathbf{k}$ out of the unit sphere S.
Sol. By the divergence theorem we have with B the unit ball

$$
\begin{aligned}
& \iint_{S} \mathbf{F} \cdot \mathbf{n} d S d \iint_{B} \operatorname{div} F d V=\iiint_{B}(2+2 y+2 z) d V \\
&=\iiint_{B} 2 d V+\iiint_{B} 2 y d V+\iiint_{B} 2 z d V=2 \operatorname{Vol}(B)+0+0=2 \frac{4 \pi}{3}
\end{aligned}
$$

since the last two integrals vanishes because the region is symmetric under replacing y by $-y$ (respectively z by $-z$) but the integrand changes sign.
$\mathbf{E x}$. Find flux of $\mathbf{F}=x \mathbf{i}+y \mathbf{j}-2 z \mathbf{k}$ out of the unit sphere.
Sol. By the divergence theorem the flux is equal to the integral of the divergence over the unit ball. Since $\operatorname{div} \mathbf{F}=0$ it follows that the volume integral vanishes and by the divergence theorem the flux therefore vanishes.

Let B_{ε} be a ball of radius ε and let S_{ε} be its surface. Then

$$
\iint_{S_{\varepsilon}} \mathbf{F} \cdot \mathbf{n} d S=\iiint_{B_{\varepsilon}} \operatorname{div} \mathbf{F} d V
$$

By the mean value theorem for integrals the right hand side is equal to the volume of the box B_{ε} times $\operatorname{div} \mathbf{F}$ at some point in the box so we get the interpretation of the divergence that we announced in section 3.3:

$$
\text { Flux of } \mathbf{F} \text { out through } S_{\varepsilon}=\operatorname{Vol}\left(B_{\varepsilon}\right) \operatorname{div} \mathbf{F}
$$

where $\operatorname{div} \mathbf{F}$ is evaluated at some point in B_{ε}. Hence

$$
\operatorname{div} \mathbf{F}=\lim _{\varepsilon \rightarrow 0} \frac{\text { Flux of } \mathbf{F} \text { out through } S_{\varepsilon}}{\operatorname{Vol}\left(B_{\varepsilon}\right)}
$$

Proof of the divergence theorem for convex sets.

We say that a domain V is convex if for every two points in V the line segment between the two points is also in V, e.g. any sphere or rectangular box is convex.

We will prove the divergence theorem for convex domains V. Since $\mathbf{F}=F_{1} \mathbf{i}+$ $F_{3} \mathbf{j}+F_{3} \mathbf{k}$ the theorem follows from proving the theorem for each of the three vector fields $F_{1} \mathbf{i}, F_{2} \mathbf{j}$ and $F_{3} \mathbf{k}$ separately. The theorem for the vector field $F_{3} \mathbf{k}$ states that

$$
\iint_{S}\left(F_{3} \mathbf{k}\right) \cdot \mathbf{n} d S=\iiint_{D} \frac{\partial F_{3}}{\partial z} d V
$$

Since V is convex we can write $V=\left\{(x, y, z) ; f_{1}(x, y) \leq z \leq f_{2}(x, y),(x, y) \in D\right\}$.
Then S consists of two parts $S_{1}=\left\{(x, y, z) ; z=f_{1}(x, y),(x, y) \in D\right\}$ and $S_{2}=\left\{(x, y, z) ; z=f_{2}(x, y),(x, y) \in D\right\}$. We have

$$
\begin{aligned}
\iiint_{V} \frac{\partial F_{3}}{\partial z} d z d x d y & =\iint_{D} \int_{f_{1}(x, y)}^{f_{2}(x, y)} \frac{\partial F_{3}}{\partial z} d z d x d y \\
= & \iint_{D} F_{3}\left(\left(x, y, f_{2}(x, y)\right) d x d y-\iint_{D} F_{3}\left(\left(x, y, f_{1}(x, y)\right) d x d y\right.\right.
\end{aligned}
$$

We know that $d x d y=\mathbf{k} \cdot \mathbf{n} d S$ on S_{2} and $d x d y=-\mathbf{k} \cdot \mathbf{n} d S$ on S_{1} so (5.1.4) follows.
Ex. Gauss law Let $\mathbf{F}=-(x \mathbf{i}+y \mathbf{j}+z \mathbf{k}) /\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}$. Let S_{a} be the sphere of radius a centered at the origin. Find the flux of \mathbf{F} out of S_{a}

Sol. A calculation shows that $\operatorname{div} \mathbf{F}=\ldots=0$, when $|x| \neq 0$. Hence by the divergence theorem the flux is $\iint_{S_{a}} \mathbf{F} \cdot \mathbf{n} d S=\iiint_{B_{a}} \operatorname{div} \mathbf{F} d V$, where B_{a} is the ball of radius a centered at 0 . From this we deduce that the flux is 0 but this answer is wrong! In fact the outward unit normal to $S_{a}=\left\{(x, y, z) ; x^{2}+y^{2}+z^{2}=a^{2}\right\}$ is $\mathbf{n}=(x \mathbf{i}+y \mathbf{j}+z \mathbf{k}) /\left(x^{2}+y^{2}+z^{2}\right)^{1 / 2}$. It therefore follows that

$$
\iint_{S_{a}} \mathbf{F} \cdot \mathbf{n} d S=\iint_{S_{a}} \frac{d S}{x^{2}+y^{2}+z^{2}}=\iint_{S_{a}} \frac{1}{a^{2}} d S=\frac{1}{a^{2}} \operatorname{Area}\left(S_{a}\right)=\frac{1}{a^{2}} 4 \pi a^{2}=4 \pi
$$

Therefore there appears to be a contradiction and we conclude that the divergence theorem is not valid in this case. In fact \mathbf{F} to be continuously differentiable and bounded in \bar{V} and \mathbf{F} is unbounded at the origin. We also remark that the flux out of any region of \mathbf{F} is 4π if the region contains the origin and 0 if the region does not contain the origin.

