Lecture 23: Gauss’ Theorem or The divergence theorem. states that if
W is a volume bounded by a surface S with outward unit normal n and F =
Fii+ Fyj + Fsk is a continuously differentiable vector field in W then
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S w ox dy 0z

Let us however first look at a one dimensional and a two dimensional analogue.
A one dimensional analogue if the First Fundamental Theorem of Calculus:
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A two dimensional analogue says that if D is a region in the plane with boundary
curve C' and n = (ny,n2) is the outward unit normal to C, then
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where ds is the arclength. (This is in fact equivalent to Green’s Theorem.)
Ex. Find flux of F = 2z2i + 92 j + 22 k out of the unit sphere S.
Sol. By the divergence theorem we have with B the unit ball
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since the last two integrals vanishes because the region is symmetric under replacing
y by —y (respectively z by —z) but the integrand changes sign.

Ex. Find flux of F = i+ yj — 2z k out of the unit sphere.

Sol. By the divergence theorem the flux is equal to the integral of the divergence
over the unit ball. Since divF = 0 it follows that the volume integral vanishes and
by the divergence theorem the flux therefore vanishes.

Let B, be a ball of radius € and let S, be its surface. Then
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By the mean value theorem for integrals the right hand side is equal to the volume
of the box B times divF at some point in the box so we get the interpretation of
the divergence that we announced in section 3.3:

Flux of F out through S. = Vol(B;) divF

where div F' is evaluated at some point in B.. Hence

divE — i Flux of F out through S,
ivF = lim
e—0 Vol(B:)




Proof of the divergence theorem for convex sets.

We say that a domain V is convex if for every two points in V' the line segment

between the two points is also in V, e.g. any sphere or rectangular box is convex.
We will prove the divergence theorem for convex domains V. Since F = Fji +

F3j+ F3k the theorem follows from proving the theorem for each of the three vector

fields Fii, Fbj and Fsk separately. The theorem for the vector field Fsk states that
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Since V' is convex we can write V = {(x,y, 2); fi(z,y) < z < fa(x,y), (z,y) € D}.
Then S consists of two parts S1 = {(z,y,2); z = fi(z,y), (x,y) € D} and
S2 = {(x,y,2); 2 = fa(x,y), (z,y) € D}. We have
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We know that dedy = k-ndS on Sy and dzdy = —k-ndS on S; so (5.1.4) follows.

Ex. Gauss law Let F = —(zi+yj+ 2k) /(22 +y? 4 22)3/2. Let S, be the sphere
of radius a centered at the origin. Find the flux of F out of 5,

Sol. A calculation shows that divF = ... = 0, when |z| # 0. Hence by the
divergence theorem the flux is [f; F-ndS = [[[, divFdV, where B, is the ball
of radius a centered at 0. From this we deduce that the flux is 0 but this answer
is wrong! In fact the outward unit normal to S, = {(z,y, 2); 2% + y* + 2% = a?} is
n = (zi+yj + 2k) /(2% + y? + 22)V/2. It therefore follows that
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Therefore there appears to be a contradiction and we conclude that the divergence
theorem is not valid in this case. In fact F to be continuously differentiable and
bounded in V and F is unbounded at the origin. We also remark that the flux out
of any region of F is 47 if the region contains the origin and 0 if the region does
not contain the origin.



