Introduction

Mathematics is a unique discipline in that it deals with the intriguing
concept of infinity. Fascinating as this may be to mathematicians, however,
it may seem at first sight to have little relevance in the world of an average
high school math student, whose tasks consist of proving formulas or finding
solutions to problems. In fact, infinity plays a vital (if invidious) role in
mathematics. More to the point, it is featured quite prominently in high
school calculus. Calculus is the branch of mathematics which is based on
real numbers and limits, both of which are intimately related to the notion
of infinity. Therefore, one might say that calculus essentially is the study
of infinity (even though when we try to find, say, the extrema of a cubic
function using differentiation, we likely are not conscious of the fact that we
are dealing with infinity). This lack of awareness has much to do with the
fact that mathematics has been modified and has evolved over time into a
tool that anyone can access. We now employ mathematics in virtually every
aspect of science and technology. Paradoxically, it arguably is because of
this omnipresence and “ease of access,” as it were, that we may fail to realize
that the concept of infinity is a foundation of the very “tools” with which
we are so familiar.

In this chapter, we will discuss the history of a branch of mathematics
which was developed by identifying the significance of a circle, a figure fa-
miliar to everyone. This branch of mathematics was developed around the
17th century, when calculus was still in its infancy.

When we see a full moon in the night sky, we cannot help but wondering
at this mystical figure. Since ancient times, it has been suggested that part
of that heavenly body’s allure is its perfect shape (a disk). This captivating
nature of the disk manifests itself mathematically as the ratio 7 of the length
of a circle to its diameter. The length of half of the circle of radius one, is .
The peculiar allure of the circle is evidenced further by the centuries-long
attempt to measure the exact length of the half-circle. Gradually, the value
for m was approximated as 3.1, 3.14, 3.141, 3.1415, etc., as the values for
the digits following the decimal point were further calculated. Eventually,
people began to think that the journey to seek more values for the digits
following the decimal point might, in fact, be endless. As the researchers
continued to pursue their quest for the exact value of 7, they eventually
began to realize that the “end” of the journey was in the realm of infinity.
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The seemingly endless sequence of numbers emanating from the “mystical”
circle gave mankind the impetus to explore the concept of infinity.
Astronomers have long shown intense interest in the relationship be-
tween an arc and a chord of a circle. This relationship is expressed (in the
study of functions) as the relationship between 2 and y in the sine function
Y = sinz. The bridge between finite and infinite found in the relationship
between the length of a chord and the length of an are, in which the num-
ber 7 appears, is translated into the sine function y = sinz. To study the
properties of the sine function y = sinz in detail, it is necessary to intro-
duce the concept of infinity. In turn, the concept of infinity gave rise to the
concept of power expansion. Historically, mathematicians used the inverse
sine function y = sin~! z, instead of the sine function y = sinz, to study
geometrically the relationship between a chord and an arc of a circle. Sinice
the inverse sine function y = sin"!z was easier to work with than the sine
function y = sinz, the infinite series for y = sin"! 2 was obtained first. The
successful use of the power series representation of y = sin™! z was due to
the effective application of Newton’s Generalized Binomial Theorem.
As you can see, trigonometric functions provided fertile soil to nourish mommm
of mathematics. )

Keep in mind that the functions we have just looked at deal with :@,m‘w-
fect” circles. There also exist functions, developed by Gauss, Abel, and theit"

oobﬁmgwogﬁmm at the beginning of the 19th century, which deal with ellipses.
These combined developments changed the mathematical landscape. With

that background let us begin our discussion of trigonometric and elliptic
functions.

LECTURE 1
Trigonometric Functions and Infinite Series

1.1. The Birth of Sine (sin), a Trigonometric Ratio

The phrase “Trigonometric Functions” may bring up images of right
triangles (Figure 1.1) and trigonometric ratios such as sin, cos, and tan.
Indeed, you likely learned about sin, cos, and tan as trigonometric ratios;
later, you used them to study the relations between the angles and the sides
of a triangle. Also, you probably studied certain formulas derived from
addition theorems by regarding sin, cos, and tan as trigonometric functions.
While you were studying trigonometric ratios or functions, you probably did
not encounter anything spectacular. Despite that, it is not an exaggeration
to say that trigonometric functions are a treasure chest of mathematics. Let
us crack open the lid of this chest and take a peek at the glittering treasure

inside.

cos tan
FIGURE 1.1

In the history of trigonometric functions sine (the trigonometric ratio)
was the first to appear. This occurred about 2200 years ago. You might
be surprised to know that the geometric figure which gave birth to sine was
not the triangle but the circle. Hipparchus (approximately 190-125 B. C.),
regarded by many as the father of Trigonometry, constructed a “table of
chords” of a circle while he was attempting to verify numerically the results
of many years of astronomical observations.

The “table of chords” of a circle is a table of the lengths of chords AA’
corresponding to central angles o (see Figure 1.2). Since it is difficult to
manually obtain the exact measurement of a chord, the length was approx-
imated.

Hipparchus considered a circle with a diameter of 6875 units. From this
circle, he obtained the lengths of chords corresponding to central angles
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FIGURE 1.2

which are the integer multiples of 7.5 degrees. He then constructed the
table of chords. Hipparchus’ table of chords later was refined for additional
accuracy and was a key element in the study of astronomical theory. Around

510 A.D., the Indian astronomer Aryabhata constructed a table consisting:

of half-chords. A table of half-chords is a table of values that represent
the lengths of half-chords AB corresponding to the central angles o (see
Figure 1.3). .

A

FIGURE 1.3

The “table of half-chords” is essentially the table of sines. Later we will
explore the significance of the half-chord table, and discuss the relations
between the degree measure and the radian measure of an angle.

In order to construct a table of half-chords, it is sufficient to use a. single
circle of a fixed radius. For example, if we construct a table of half-chords
from a circle of radius 6 units, then according to the principle of similarity,
the lengths of the corresponding half-chords of a circle of radius 12 units
are twice those of a circle of radius 6. The lengths of the corresponding
half-chords of a circle of radius 2 units are 1 /3 unit. To simplify the usage
and for standardization, let us construct a table of half-chords from a circle
of radius 1 unit (the unit circle).

Next, we must determine how to measure the half of the central angle
corresponding to a chord of a unit circle. If we refer to Figure 1.3, the
measure of angle & corresponds to half-chord AB. The reader likely will re-
call measuring angles by the units of degrees with a protractor in grammar
school. However, from the point of view of higher mathematics, the degree is
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not an approriate unit for measuring angles. One reason is that 180 degrees
is the measure of the angle corresponding to half of a circumference. For ex-
ample. if we divide a half-circumference into n arcs, then the corresponding
central angle for each arc is Vmb degrees. The number 180 is an inconvenient
obstacle in any calculation. Also, the number 180 is an arbitrary number
and, speaking in mathematical terms, has no relation to the circumference of
a circle (the number 180 is related to the sexagesimal system used by ancient
Mesopotamians some 3000 years ago). As a new unit of angle measure, we
should change 180° on the protractor to a half-circumference 7 of the unit
circle and convert degree measure by multiplying by Tags (see Figure 1.4).
According to the conversion, 90° is 5 and 60° is 5. This improved method
of measuring angles is called radian measure.

FiGure 1.4

From now on, when we mention a circle, we will mean the unit circle
(a circle of radius 1 unit). The measurement of angle o will be in radian
measure. Therefore, if the central angle of the corresponding arc of the unit
circle is «, then the length of the arc itself is also o (see Figure 1.5).

7z

FIGURE 1.5

With this conversion of degree measure into radian measure, we now can
consider the table of half-chords to be a table used to obtain the value y
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(the length of a half-chord) when z is given (sce Figure 1.6). This relation
between y and z is the familiar sine function:

y =sinz.

Therefore, a table of half-chords is the table of values of sine function.

/
x
\
/
1

FIGURE 1.6

& Considering the relation between y and z in Figure 1.5, it :

is more suitable to call the trigonometric function y = sinz'a - &

“circular function”. In fact, in recent years, the term “circu-
lar function” has sometimes replaced the term “trigonometric
function” in mathematics textbooks. The definition of sine,
cosine, and tangent as trigonometric ratios related to right
triangles probably occurred in the 14th or 15th century, when
Euclidean geometry was the central theme of mathematics.

1.2. The Trigonometric Function: sinx

The trigonometric function y = sinz is the central theme of this section
and we will restrict the angle = to the range 0 < z < 5. In the expression
of the function y = sinz, z is a variable (precisely speaking, an independent
variable). When z varies, the value of y varies accordingly. In that sense,
y is a dependent variable. When the independent variable 2 is determined,
then the dependent variable y is determined. From now on, we will regard
the formula y = sinz as a functional relation between z and y, and we will
study the properties of this relation.

The relation between z and 3 in the function y = sinz is given by
the relation of central angles z, or the lengths of the corresponding arcs z,
and the lengths of the corresponding half-chords y of the unit circle (see
Figure 1.7, left). From this relation the additive formula

sin(a + 3) = sinacos 8 + sin Bcosa
for sine is derived immediately using Figure 1.7.

CHALLENGE 1. Derive the additive formula for cos using similar argu-
ments.

1.2, THE TRIGONOMETRIC FUNCTION: sinx 9

y=sinx

FiGure 1.7

As you may have guessed by now, the main focus of the function sin
is in the relation between the arc length z (measured in radians) and half-
chord length y. However, the arc of a circle is curved and a half-chord is
straight. We cannot measure a curved line with a straight edge ruler, nor
can we measure a straight line with a curved measurement device. Curved
lines and straight fines are like oil and water; they don’t mix. For example,
if we want to measure the length of an arc of a circle, we need to divide the
arc into still finer arcs and measure the length of each chord of these finer
arcs, then sum up the total measurements to obtain an approximation of
the length of an arc of a circle (see Figure 1.8). Since ancient times, people
tried to evaluate the half-circumference 7 using this approach.

A

FIGURE 1.8

However, the half-circumference cannot be measured exactly. As you
know, 7 is expressed as an infinite decimal fraction

m = 3.14159265358979323846 . . . .

The fact that 7 is an infinite decimal indicates that the half-circumference
can never be measured by a finite number of operations. This shows that if
we conceptualize a circle in terms of numbers, it will appear as “infinity”.

¢ 7 iscalled an irrational number, i.e., a number that cannot
be expressed as a fraction. Johann Heinrich Lambert (1728
1777) and Adrien Marie Legendre (1752-1833) proved this at
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the end of the 18th century. Therefore, if 7 is given as an
infinite decimal fraction, it cannot be periodic.

The function y = sin x shows the relation between the arc lengths and the
half-chord lengths in a circle. When we study this relation, we will encounter
infinity. In fact, the importance of the function y = sin x is that the concept
of infinity is hidden within the function. In studying sinz in detail, we will
catch a glimpse of the shining source of mathematical creativity. This is why
we earlier compared the collection of trigonometric functions to a treasure
chest.

So far, we have been talking about the trigonometric function y = sin z,
with y being a dependent variable and x being an independent variable.
Observe the two figures in Figure 1.9. Both of them show the relation
between the arc length and half-chord length of a circle. Without thinking

oo deeply, which would you choose so that z will be an independent variable. -

In the lectures, alittle less than 1/3 of the students who attended picked the
left figure. The rest chose the figure on the right (although some om those
students didn’t really know why they chose thusly!).

FIGURE 1.9

Whether by design or chance, the majority of the students have cho-
sen the correct figure. When we study the relation between two variables,
we normally choose 2 as the independent variable to represent a quantity
which can be measured easily, and we choose y as the dependent variable
to represent a quantity which is rather difficult to measure. For example,
if we look at a train operation table, we will find that travel time, which
is easy to measure, is given as the independent variable, and we will also
find distance, which is not as easy to measure directly, as the dependent
variable. However, if we consider an angular rotation or an equal division of
an arc of a circle, then probably the figure on the left of Figure 1.9 would be
a better choice. When we observe the figure on the right of Figure 1.9 in a
geometric sense, the first thing we notice is the relation of lengths between
the arc and the half-chord of the figure. It seems natural to choose the figure
on the right, where = represents the length of a half-chord of a circle. Once
we choose z to represent the length of a half-chord, it becomes possible to
study geometrically the relation between x and y by pictorial representa-
tion. Doing just that, mathematicians in the 17th century interchanged the
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dependent and independent variables of the function y = sinz, and a new
avenue of research began.
The figure on the left of Figure 1.9 shows the relation between z and y
as the familiar function
y = sinz.
The figure on the right shows the relation between x and y as the function

y =sin"ta.

The function y = sin™! 2z is called the inverse sine function, or the arc
sine function. The relation between x and y is shown in Figure 1.10 as

both a sine function and an inverse sine function.

S

y=sinx y=sin'x

FiGUurE 1.10

1

1.3. sin"'2z and tan~'z

Now we will get to the heart of the quest for infinity (hidden in trigono-
metric functions) by studying the function y = sin™! z. On the way, we will
discuss the function y = tan™! z (the inverse tangent function). The path to
infinity via y = tan~! z presents different scenery than that via y = sin™! &
The function y = tan~! z is the inverse function, which is obtained by re- -
versing the relation between dependent and independent variables in the
function y = tanz. Figure 1.11 might help to explain the relation between
dependent and independent variables of the sine and inverse sine functions.

y=tanx y=tan 'y

Ficure 1.11
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Let us now observe the effect on the functions y = sin 'z and Yy =
tan™! z when we make small changes to the value of z. Let us change the
independent variable x by a small amount and then observe the correspond-
ing change in the dependent variable y. The change of z is denoted by Az,
and is called an increment of z. The corresponding change of y is denoted
by Ay. Our goal is to approximate Ay in terms of Az, that is, to find an
approximate relation between Az and Ay. We can best understand this rela-
tion by studying the geometric representation for Az and Ay corresponding
to the functions y = sin™! 2 and y = tan™' 2 (see Figure 1.12).

y=sin'x

[¢113)

FIGURE 1.12
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In Figure 1.12, the left column refers to the function sin™!(x), and the
right column refers to the function tan™ (z). For the function y = sin~!(x),
relations in picture (I) hold by the Pythagorean theorem. In picture (II), the
increment Az and the corresponding increment Ay are shown. The increase

AP is shown in picture (III). In the shaded triangle the hypotenuse is ~ Ay
and the base is =~ Az. This triangle is similar to the shaded triangle in

picture (I). Therefore £ ~ —L— hence Ay ~ —-L

1

For the function y = tan™" z relations in picture (I) hold by the Pi-
thagorean theorem. In picture (II), the increment Az and the corresponding
increase Ay are shown. The small shaded triangle is similar to the shaded
triangle in picture (I). Hence, PQ ~ /1 + 22 Ay. In picture (III), the tri-
angle OPQ is similar to the triangle OP'Q’. For small Az, OQ ~ 1. Hence,
[I.WM? ~ —AL_ Therefore, Ay ~ —L;Ag.

T Vita? 1+z?
Hence, the relation between Az and Ay is given as follows:
1
If the function is y = sin™' z, then Ay &~ —==—"Axz.
) Yy /\H — HM
1
If the function is y = tan"' 2, then Ay ~ ﬂb&.
x

The two approximate expressions look differently due to the difference in
the domains in which the independent variable x varies. In these expres-
sions, as the increment Az of the independent variable tends to zero, the
approximation of the increment Ay of the dependent variable approaches
the precise value. For both functions related to Figure 1.12 we obtain an
approximate expression by estimating the length of a very small arc of a
circle in terms of the line segment PR in Figure 1.13.

FiGURE 1.13

1.4. Integral Representations and Power Series Representations
of Functions

If the independent variable 2 undergoes a small change Az, then the
corresponding change Ay in the dependent variable y is approximated as
follows:
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(1) if the function is y = sin™! z, then Ay =~ — Auz;

) " . H

(2) if the function is y = tan™' z, then Ay ~ 1o Ax.
-+ I*

(For the following paragraph, refer to Figure 1.14. )

Consider an arc with fixed length y. Taking n to be any positive integer,
let us divide the arc equally into n smaller arcs by choosing points F,, Py,
Py, ..., Py, where Py = E and P, are the endpoints of the arc and Py, are
the %EAEW points for k = 1,2,...,n — 1. We then estimate the length of
each arc ] P11 by using the w_oo<o approximate expressions. Let Ry, mm,

. R, be the intersection points of the lines passing through P, P, ...,
~u; @:Q perpendicular to the radii OF, OPy, ..., OP,_1, respectively. Then
the length of each perpendicular segment ﬁ»m» is approximated by Az (see

Figure 1.14). Hence the length of the arc @Nu: is approximated as follows:

(length of EP|) + (length of @wv + -+ + (length of @MV
(length of PyR;) + (length of PyRy) + - - - + (length of PRy,

3 7

Q

FIGURE 1.14

We have arrived at the approximate expression (3) by studying the pre-
ceding geometric figures. But to refine this expression, we must divide the
arc into smaller and smaller arcs. Then the total length of the perpendicular
segments gets closer and closer to the exact length of the arc. To replace
the approximation with an equality, we must briefly depart the finite world
by letting the integer n approach infinity, thus crossing over into the world
of “infinity”. As mentioned previously, to clarify the relation between z
and y, we must walk the path to infinity. As the integer n tends to infinity,

1.4, INTEGRAL REPRESENTATIONS

=
it

which is written as n — oo, the limit of the total length of the perpendicular
segments is given by the definite integral as follows:

.,ﬁ&
Tc wH \ — (obtained by using expression (1) above),
o Z

.aw
Auv @H \ %NM (obtained by using expression (2) above).
) -

/

\_/Q

FIGURE 1.15. The relation between # and y in equation (4).

— gy

~—~

FIGURE 1.16. The relation between 2 and y in equation (5).

& For those of you who have not studied integral calculus,
let us briefly discuss integrals. The notion of integral orig-
inated in the search for the areas of geometric figures. If a
nonnegative function y = f(z) is defined for real numbers be-
tween a and b, then we obtain the area under the graph of
y = f(x) from a to b using the definite integral. The area of
the region bounded above by the graph of y = f(z), below by
the z-axis, and by vertical lines z = a and = = b is called the
definite integral of y = f(z) from a to b. It is denoted by

(+) \ e

The numbers a and b are called the limits of integration.
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To obtain the definite integral of y = f(z) from a to b (the area under
the graph of y = f(z)), let us divide the interval [a, b] into n equal sub-
intervals by choosing numbers zg, 1, ..., Z, such that ¢ = z¢ < 2; < 72 <

< zp=band xp —xp_y = Nﬂp. If we denote wwlp by Az, then the area

under the graph of y = f(x) from a to b is approximated by the sum of the
areas of the n rectangles (shaded figures in Figure 1.17) as follows:

(%) flxo)Az + f(z1)Az + -+ f(zy-1)Az.

FIGURE 1.17. The area of the distinguished rectangle equals f (z1)Az.

If we let Az approach zero (Az — 0) by further dividing the interval,
then the sum (+x) approaches the area of the region below the graph of
y = f(z) from a to b. The definite integral %\wx?v dz is, in a way, defined
as the limit of the sum (xx).

Once we established the notion of the integral using this limit process,
we can apply the limit process to any sum of the form (xx), even if the
sum does not represent the approximation of the area. In fact, the definite
integral of a function y = f(x) from a to b is defined precisely as the limit
of the so-called Riemann sums of the function. The area under the graph of
y = f(z) from a to b is given by the definite integral (%) according to this
precise definition.

In expressions (4) and (5), the limits of integration are zero and z. The

expressions ——-— and H_wm under the integral signs (called the integrands)

V1-t2 1+

. 1 1
came from inrs] and 177,

The expressions (4) and (5) can be rewritten as follows:

respectively, by replacing x with t.

T
1
6 =sin"ly = \ ——
(6) y e
T
(7) y=tan "z = \ S dt.
0
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We will now discuss the integral representations of the above two func-
tions. The expressions (4) and (5) show that the “mother” of sin™!z is

—L_ and that of tan~! z is Tw%. Referring to Figure 1.12, we see that the

Vi-i2
expression ,\Wﬂ is derived directly from the Pythagorean theorem. But the

expression g m 7z Is derived rather indirectly because the relation between
and y in the function y = tan™ 2 with respect to a unit circle is indi-
rect, resulting in a form other than the Pythagorean theorem. But if we
restrict ourselves to observing the end results of our geometric proofs, the
equation (7) has a much simpler form than that of equation (6).

However, in the case of equation (6), the arc length y and the half-
chord length @ must be related to each other via an infinite expression,
as the formula m = 3.141592... shows, and that infinite expression must
somehow be incorporated in the integral notation on the right-hand side of
equation (6). (At this point, the reader may feel that although the entrance
door to the world of infinity is opening, yet the interior doors seem to remain
tightly shut!)

We will see how x and y are related to each other by removing the
integral signs from equations (6) and (7). At first glance, it appears that
it will be easier to start with equation (7). The integrand is given by the
infinite geometric series! as follows:

1

QHT%+%|%+%|:. (jt] < 1).

This equation shows that if the degree n of a polynomial increases to
infinity, the resulting infinite series represents the fractional expression. For-
tunately, since the expression %m is under the integral sign of the definite
integral (7), the integration is rather simple. By utilizing the integral for-

mula
\H = L 2"t
0 ) n+1 ’

1The partial sum S, of the geometric series is given by

2
(#) m+§+.:+ni:LHﬁ forr # 1.
-
We obtain this formula by comparing S, with the left-hand side of the equation and

subtracting 7.5, from S,. We obtain S, — S, = (1 —7)S, = a — ™. Therefore S,, =
2

p\ﬁwm\v. The sum of the infinite geometric series is givenby a+ar+---+ar™+--- = .

émovamwziummmoSHE_mUu\mvv_ﬁsmdrm::g;Eo@mmmﬁoh?Ho @occ:_v:mw%iuSmmwma

rewrite formula (#) asa+ar+---+ o™ = 2

a

1= — 1= The limit of S,, as n tends to

infinity is equal to the limit of A 4o ﬁv If || < 1, then the limit of 7™ as n tends to

T—r T T-r

infinity is zero (r" — 0 as n — oo). Therefore, a + ar + - - - + ar™ = oS

i—r
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and by using the termwise integration, we have

‘~Inm:L&|\a ! dt
e S L+e2

.N.
u\gﬁ|m+m|%+%x:;&
0
13 15 1, 14
=z —-zz°+ -2’ — - 7= ([ .
37T T g (e <1)

When the “veil” of the integral m?,b is removed, as it were, from the
definite integral of the function y = tan~! z, the relation between 2 and y is
revealed clearly in the infinite series representation of 3. This fact is stated
as follows:

1 15 1 1
(8) @HSSlHIleaLﬂm& \mau..rm&m
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by a power series. The reason that it is not easy is that the integrand

©) o

was not well understood. So let us now study this expression. The first
thing we note is that it cannot be changed into any other form (e.g., infinite
series).

Recall that when we discussed the function y = tan™! 2, we found that
the sum of the infinite geometric series played a decisive role in deriving
expression (8). Therefore, for the function y = sin™ x there must also be
some important clue hidden in expression (9), which will yield the infinite
power series. This is indeed the case, as Newton was first to discover.

When Newton was in his early twenties (in 1664 or 1665), he studied the
General Binomial Theorem and obtained the following formula:

The right-hand side of the above equation is called the Power m,mlmm
Expansion of the function y = tan™' 2. Let us approximate y = tan"l gz
by using the first five terms of the power series expansion for z = o 8. ‘Hrm
computation gives y as m@EoﬁEmdoJ\ 0.6798. Since tan™1 0.8 = 0.67474 . .
the error is less than 1455 (see Figure 1.18).

FIGURE 1.18

It has been shown that the right-hand side of (8) will converge even if

z =1, and we find the sum, in this case, to be T 1- If z =1, this power series
vaoogmﬁ the famous Leibniz Series for = T, namely

T_, L1 1 .

1T 3T T
The power series expansion for the function y = tan~!z was known to
mathematicians in India as carly as the 15th century. In Europe, this series
remained unknown till the mid-17th century, when it was discovered by
Nicolaus Mercator (1620-1687) and John Wallis (1616-1703). In contrast to
the function y = tan~! , it is not easy to represent the function y = sin™! z

If « is a positive or negative rational number, then

lT+z)*=1 +E.e+ AQwHHvaJr AQINQIMV
+...+DAQICAQIMV...AQI#.TCHW.T:. for |z| < 1.

k!

The notation k! stands for k factorial.?

CHALLENGE 2. Show that
(1+z)? =142z +27%
(1+2)3 =143z +32% +2°.

CHALLENGE 3. Using the binomial theorem, find the power series ex-
pansion for (1 + x)S.

2The value obtained by multiplying all the natural numbers from 1 to n is denoted by nl.
Some examples are shown below:

=1,
A=2-1=2,
31=3.2.1=6,
4=4.3.2.1=24,
5! =120,

6! = 720,

7! = 5040,

81 = 40320,

9! = 362880,

10! = 3628800.
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CHALLENGE 4. Show that in order that the power series expansion for
(1+2)* be a polynomial (a finite series), a must be either a natural number
or zero.

CHALLENGE 5. If o = —1, show that (1 + )™ is equal to the sum of a
geometric series.

CHALLENGE 6. If o = §, approximate v/I + z by finding the first five
terms of the infinite power series expansion.?

According to the general binomial theorem, if & = —1 and z = —¢2

then
1 1 1 1-3 1-3-5
e Tl € o ) BT QR i S i A

W 2t ot et
Thus, it is clear that if we remove the integral notation from expression (6),
then the reiationship between z and v is as follows (with y represented by
the infinite series): L

@!mmbwpa\\g ! dt
Jo V1=

e 1 1-3 1-3.5
= T+ Sty 2079
kA s eyt Taret dt
128 1-325 1.3.547
=T+ - — —_— _ .
ww+m. m+m.m.mq+
The above fact is restated as
7 . L 123 1.325 1.3.527
[(10) if ]| <1, theny =sin"lg =g+ -2 4 2 °F -+
wu+w$m+m§mﬂ+

The right-hand side of this equation is called the infinite power series
expansion of y = sin™'z. Pay attention to the coefficients of the terms of
the series. For example, the coefficient of @9, following 7, is given by

1-3:5.7 2°

2:4.6-8 9"
As you can see, even numbers and odd numbers appear in an orderly se-
quence.

We tend to think that a circle has nothing to do with the world of
numbers. Returning to our earlier analogy, this thought is reinforced when
we look at the full moon. Certainty, we do not think of numbers when we
gaze upon the moon’s mysterious beauty. But, in fact, as in expression (10),
even numbers and odd numbers appear in the relation between the arc length
and the half-chord length of a circle. This fact is intriguing. No one knows

w P Lol — .

The definition Wm am and a”" can be given as follows: if both m and n are natural

numbers, then an = %/a™ for a > 0. If n is a natural number, then ¢™™ = L. for g > 0
am '
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why such a harmonious relation exists between a circle and the world of
numbers. Mathematicians know only that equation (10) is valid, but they
cannot explain the reason behind it.

1.5. Reversing Infinite Power Series

So far, by working through the process of deriving infinite series from a
circle, we have seen the power series expansions of the functions y = tan™' z
and y = sin~! 2. However, geometry not withstanding, the most important
trigonometric function for the development of mathematics in the various
fields of science is y = sinz. Can the function y = sinz be represented by a
power series expansion as

(11) Yy =sinz = ag+ 0z + asz® + azz’ + - + a2’ + - - -

for suitable coefficients ag, a1, ag, ...7
If it is possible to represent this function by the power series expansion,
then what are the coefficients ag, a1, ag, ... 7

& If you studied calculus, then you know that (sinz) =
cosz. Hence, we know that sinz = h costdt. In this in-
tegral representation of sina, cost follows the integral no-
tation. But in the integral representation of sin™'x, ,\M\%
follows the integral notation. Using the Binomial Theorem
and the Termwise Integration Theorem, sin™' z is repre-
sented by the power series expansion. We cannot apply the
same method to cost (which follows the integral notation) to

find the power series expansion of sinz.

Recognizing this, Isaac Newton instead employed a reverse method to
obtain the power series. To use Newton’s method, we must first assume that
the function y = sinz is represented by the power series in expression (11)
for suitable ag, a1, az, ... . In this function, x represents the arc length and
y represents the half-chord length. The relation between the two functions
sine and arcsine is given by the following diagram:

sin

the arc length —— the half-chord length

@) e (¥)

sin™t
This relation is simply stated as
y=snzezr=snly?!
Newton attempted to use the following method to find the coefficients ag, a1,

ag, ... .

4The notation (&) is read “if and only if” and means equivalence.
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First, he represented 2 = sin™! y by the power series as
1y 1-34° 1.3 y7
VTS Sty s e T
Substituting the sum of the power series in (11) for y we obtain
)

= (ag+ @2+ asx? + -+ gpr 4 - -
1
- M[wﬁ@o+@~_a+n.wam+ ot agat 4 )3
(12) 1-3 ) " s
._rm.ﬂmgo;f@?&l.unmnﬁ +ootan2" 4 --)
1-3-5
2-4.6-7 .
Newton thought that using the method of undetermined coefficients?
in the above expression, he might be able to determine the coefficients ag,
a, az, ... . Newton called this approach the reverse method of solving
the power series. )
Some readers may be unfamiliar with the method of undetermined co-

4 (a0 + a1z + a2 + -+ apz” + )7+

efficients. Therefore, before we discuss the result of Newton's findings, let .
us use an example to explain briefly how the method of undetermined co

efficients works. Consider the function y = tan~!x, which appeared’ in
Challenge 6. Using the binomial theorem, we have

/ 1 1 1 5
13 =Vidar=14+a—=a24 g8 _ 2 4.
(13) Y= H+w& mHJﬁHm% Eme.f
Let us now find the coefficients ag, a1, aq, ... by using the method of

undetermined coefficients.
First we have

@H/\~+&.Aﬂvgﬂm\miﬁ
Therefore, if y = /1 + z is represented by the power series as
(14) y=V1i+a=ag+az+a®+azzd -+ anx” 4,

5The method of undetermined coefficients is a tool used to determine the coefficient of
any power in a given polynomial by comparing it to the coefficient of the term of the same
power in an identical polynomial. For example, if a polynomial 2* + 1 is divided by the
polynomial z? — 2z, then the quotient and the remainder are obtained by setting z* + 1
to be equal to the identical polynomial (az -+ b) x (22 — 2zx) + cx + d, that is,

aw+HH€&+Sanmlw&v.TnaL.&
or
Hu+hMaau+@|m5&w+?lu$& +d.

By comparing the coefficient of each term on the left-hand side of this equation with the
coefficient at the term of the same power on the right-hand side of the equation, we have

a=1, b-2a=0, ¢—-2b=0, d=1.

From the above system of equations, we see that the quotient and remainder are given by
polynomials z + 2 and 4z -+ 1, respectively.
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then by substituting for y in the equation z = y* — 1 the sum of the power
series in (14), we have

= (ag+ a1+ asx® + a3+ 4 ana” 4o UN — 1.
If we expand the right-hand side of the above expression, we obtain
z = (a§ — 1) + 2apa1z + (a? + 2apa)x? + 2ajay + apaz)z®
+ {a3 - 2(agaq + ajaz) i+ -

Since this is an identity with respect to x, comparing the two sides of the

equation gives us
apg — 1= Ou

MD:D_ = H,
@m + 2apag = 0,
2(a1a2 + agas) = 0,

a3 + 2(aoaq + azaz) = 0,

From the first formula we have ap = 1. By substituting ag = 1 in the second
formula, we obtain a; = 1/2. From the third formula we get

_od 1y
27 7 T T2\2) TR
Similarly we have
_me 101y _ 1
BT T 278 T 1w
2 N
5+ 2a1a; 1 1 1 1 5
g @tZues L[/ 1N 1 1] 5
2ag 2 8 2 16 128
Using this technique of successive substitutions, we obtain
1 1 1 5
ag =1, SHM_ amH\wq Qwﬂw and §H|~|w%

which are identical to the coefficients in equation (13).

If we do not mind spending a lot of time, the method of undetermined
coefficients helps us to find finite numbers of coefficients in expression (13)
by determining the first coefficient, then the second, and so on. The right-
hand side of (13) has infinite number of terms; therefore, unless we find
some general rule, we cannot say that y = /I + 2 is represented by the
power series expansion.

One uses the method of undetermined coefficients to obtain the power
series by the reverse method. The reverse method is a heuristic method
whereby we first find a limited sequence of coefficients, and then make a
conjecture about the nth term of the sequence. We then need to prove that
our conjecture is valid.
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In 1669, Newton solved equation (12) by the method of undetermined
coefficients and obtained the first five terms of the power series expansion
for y = sinx as follows:

L s,

I ST R
6 120 5040 362880 ~

y=z

He then concluded that the coefficient of 22"+ (up to the sign) is %

This surprising assertion was valid! The function y = sinz is indeed °

represented by the following power series:5

11, 1 1,
Z:&Islw.flﬂ I|H +@\ _.
! n H 2n+1 e
+ (=1 @icl +

This representation is valid for any value of z.

This discovery opened doors to further study in Emb% disparate areas.
For example, if we substitute sin § = W“ sinf = ,vmv sinf =1,sinm =0 into
the above expressions, we obtain from each of the substitutions a mysterious
relation expression relating to the circumference ratio .

Now, let us compare the power series expansions (8) and (10) of the
functions y = tan™!z and y = sin~! & respectively. We realize that the
power series representing y = tan~! z is much simpler than the power series
representing y = sin™'z. Therefore, it seems that we should be able to
obtain the power series expansion of the ?bo&oz y = tanz by solving
in reverse the power series expansion of y = tan™'z just as we obtained
the power series expansion of y = sinz by the method of undetermined
coefficients. But in fact, it is not possible to solve the function y = tan™' 2
in reverse. We know this because the power series expansion of y = tan™?

is known today to look as follows:

xz

if |z| < H, then tanz =

00 AS
MN:AMNJ — sz 2n—-1
2 M !

X
1
= (2n)!

o,@ = cos is represented by the power series expansion as follows:

1 1
coS T = Iﬁ% +H% + -
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'The numbers B,,, which appear in the numerator above, are called
Bernoulli nwumbers.” The sequence of Bernoulli numbers is an irregular se-
quence of rational numbers. The first nine terms of the sequence are given
as follows:

1 1 1 1 5
Bi=>, Byg=-— Bs=— Byj= - =2
T Ty BT Mty Bt
691 7 3617 43867
By = Br=~+ By=2-1 il
“Toamo U7 BT BT g
Bjs is given by the following (rational) monstrosity:
8615841276005
Bys =
14322

The coefficients of terms in the power series expansion of tan do not follow
any particular rule. Hence, even if we try to employ the reverse method
and obtain the values of the first several coefficients, we will not know the
coefficient of the general term of the series. Without being able to express
the coeflicient of the general term of the series, it is impossible to obtain the
power series expansion of tanx from that of tan™1 z

1.6. History

At the beginning of the 17th century, John Wallis (1616-1703) and his
contemporaries developed what is known as infinite operation. This op-
eration later was expanded by Newton and Leibniz. In the 1680s, these two
mathematical geniuses introduced a completely new mathematical system
called calculus. Even at that early date, both Newton and Leibniz knew
how to represent the functions tan~™ z, sin~'z, and sinz by power series
@%mbmwosm They also knew the power series representation of the function
y = e® — 1. They started from the power series expansion of log(1 + z),
which is given by

1+1¢
HHIW& +Hawlwa + WHm
2 3 4 5
They then solved the above power series equation in reverse and obtained
the following:

T
log(1 + ) \ !&N!\ﬁiﬁxlm!meV%I...v&
0

1= 1 1 1
y=ce H+%s1%& +HH+

"Bernoulli numbers are defined by the following series:

A 1) Nw:%
IHIII M : 7.
o for |z| < 2w

mew

n=1



26 1. TRIGONOMETRIC FUNCTIONS AND INFINITE SERIES

Since Newton was able to represent a number of functions by the power
series, he likely became convinced that any function could, in fact, be repre-
sented by a power series. Quite probably, he arrived at this conclusion after
observing both the above power series expansions, and also the power series
obtained by the general binomial theorem.® However, his conjecture was
incorrect, as current knowledge about functions reflects. But if we narrow
our focus to those functions which appear in Newtonian mechanics, then
Newton's conjecture is correct.

In 1715, Brook Taylor (1685-1731) showed that if a function f(x) is
represented by a power series expansion, then the power series is given by
the higher order derivatives of f. This series is called the Taylor series for
f(x). In 1742, by taking a special case of the Taylor series expansion, Colin
Maclaurin ﬁoom 1746) discovered the following power series expansion for
f(z), called the Maclaurin series:

() f(z) = £(0) + f'0) \\AS \EAS S \SXOV

1 z -+ 3 s l &+
Most students encounter the m@oiw expansion in lecures on m_mmmmcE& and
integral calculus. moéméw the general term of this series can only be found
once we obtain f((0). Embow, the Maclaurin series for f(z) will be-found
only when f has derivatives of all orders.

CHALLENGE 7. (For those of you who studied calculus.) Find the
Maclaurin series for e”, sinz, and cosz using the power series expansion ().

As we have seen, once we know that a function can be represented by
a power series, then the power series is the Taylor series. Representing
a function by a power series via integration and differentiation of higher
orders, we catch a glimpse of the world of infinite operations. Since the core
of that world is the system of differential and integral calculus, we can fairly
say that the 18th century was an era of analysis which blossomed from the
study of calculus.

Isaac Newton (1642-1727) was born in the remote countryside of eastern
England. He was, by all accounts, an ordinary child who spent a great
deal of his time tinkering with mechanical devices. He entered the Trinity
College of Cambridge University, but in 1665 a plague epidemics spread
throughout England. As a result, the University was closed and Newton
returned to his home in the English countryside. It was during this forced
hiatus that Newton began his deep study of both physics and mathematics.
Newton later stated that the time he spent in the countryside while the
University was closed was the most creative and productive period of his
life. In fact, he discovered universal gravitation, which is amongst his three
greatest discoveries ever. During this time, he also established the study of
differential and integral calculus and the fundamental idea of the spectral

81t is believed that Newton’s study of the general binomial theorem was the starting point
of his mathematical research.

M
=3
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nature of light. These amazing scientific achievements he incorporated into
Principia, published in 1687 when Newton was 46 years old.

Newton's research laid the foundation of modern science; his influence
is felt at every level of modern technology. Not long ago, Cambridge Uni-
versity created the Isaac Newton Institute for Mathematical Sciences to
commemorate his numerous scientific achievements. Today, this institute is
world renowned for cutting-edge research in the fields of mathematics and
physics.?

@902&L the end of his life, Newton turned to matters of religion, and he also became the
Master of the Royal Mint!



