On the Number e

E. Kuz’MIN AND A. 1. SHIRSHOV

1. What Is e?

You have probably already been introduced to the number 7 (pi), 2 number
with a very long history, whose beginnings are lost in the ancient mists of time.!
The number 7 appears in high-school courses, but in high school you may never
encounter the number e at all. However, this wonderful number, which came into
use in the eighteenth century with the development of mathematical analysis, plays
a role in modern mathematics that is perhaps even more important than that of .

A typical textbook gives two definitions of the number e. The second (we won’t
be needing the first) defines e as the limit of the sequence z, = (1+ 1)". Let us
prove that this limit exists.

LEMMA 1. For all m,n
n m+1
o) (2™
n m
The inequality (1) is very easily proved using the well-known Cauchy inequality

a+az+---+
Yaa2---an < i p Gn' (2)

where a;,az,...,a, are positive numbers, not all the same.? From (2) it follows
that

m+“+{/( l)n(l ) )m+1<n(1+%)+(m+1)(1—ﬁ)21’

1+E T m+1 m+n+1
(1+;) (1—————m+1) <1
n m+1
(1+l) <(1+i) .
n m

The Russian original is published in Kvant 1979, no. 8, pp. 3-8.
I1Many interesting facts about the number = can be found in F. Kympan's book A History of
the Number m (Moscow, Nauka, 1971). See also the article by A. Zvonkin, “What Is #?” (Kvent

1978, no. 11).
2Ty proving this on your own.

from which we obtain

and
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LEMMA 2. The sequence {zn} is an increasing sequence.

PROOF. Let us denote (1+ ;ll-)"'u by ¥n. According to Lemma 1, Zn(n42) <

Yn+1; that is,
1 n(n+2) 1 n+2
(+amrm)  <(+em)
Therefore,
(1 mrm) <(+):
q n(n +2) +1
Consequently,
(1+ - )n= (a+ 1=  n+3
n(n+2) nm(n+2)"  n4+l
As a result,
n+1\"  [n+2\""
<\/— L]
( n ) (n + 1)
that is,
ZTn < Tnil. O

From Lemmas 1 and 2 and from Weierstrass’s theorem it follows that the se-
quence {z,} approaches a limit. The notation e to denote this limit was introduced
by Leonhard Euler (1707-1783).

EXERCISE. Prove that lim,, o ¥» = € and that for all m,n,
Zn < €< Yn.

The number e can also be defined as the limit of the sequence

—1+1,+2+ -|~1
Let us prove this. Accordmg to Newton’s formula,
+n(n—1) k'(n k+1) :k+_..+n_Ln
—1+1+21,(1-—%)+*-- (3)

+3(1-1) (1-2) - (1-222) 4.
- (-2

(From (3) it can also be seen that the sequence {z,} is an increasing sequence.)
Eliminating the factors in parentheses simply increases each item on the right-hand
side of (3). Therefore, z,, < s, (when n > 1).

We now fix an arbitrary k > 1. Assuming that n > k, we discard all the items
on the right-hand side of equation (3), beginning with the (k+-2)th. We thus obtain

o114 g (1= D) e 2 (1-2) (1-2) - (1-522).
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As n — oo (for fixed k), the right-hand side of inequality (4) approaches s. Passing
to the limit in (4), we obtain e > si. Thus, 2, < s, < e. From lim,—.o, 2, = € we
obtain lim,_.cc 5p = €. In this way,

1,1 1
e=l+totot =t (5)

It is much more convenient to use the sequence {s,,} for computing approximate
values of the number e than it is to use the sequence {z,}. Let us determine the
difference e — s,,. From (5) it follows that

1 1

TR Emr ) Ty T

1 1 1
"+ 1) [1+n+2+ (n+2)(n+3) +]

1 1 1
<m[1+n+z+(n+z)z+“']

_ 1 1 . n+2
T+ 11— ()2l
1

The result obtained can be expressed in the form of the following equation:

On
e=3n+n.n! (0<6n<1)- (6)
From (6) it is easy to show that the number e is irrational. Let us see what
happens if we assume that e is rational, that is, that e = g for some integers p and
g- Then ¢! - e is an integer. It follows from (6), with n = g, that
q! g 0,
le=qgl+agl+ = +...4 L 479
g-e=¢q+q +2!+ +q! )
It follows that %‘l is also an integer, which is obviously not the case, and so our
assumption that e is rational was incorrect. Here are the first decimal digits of the
irrational number e:

e = 2.718281828459045 ... .

2. The Problem of Partitions.

The number e, the darling of mathematical analysis and the theory of functions,
Pops up rather unexpectedly in certain combinatorial problems. Let us look at one
such problem.

We begin with an example. A set with two elements {a),a2} can be divided
into disjoint nonempty subsets (in talking about partitions, such subsets are called
classes) in two ways: There’s the “element-by-element” partition {a,}, {a2} and
the degenerate “whole” partition {a,a2}. Analogous partitions can be made with
any set of n elements (n > 2). When n = 3, three more kinds of partitions become
possible (Figure 1).
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FIGURE 1

Let us call the number of partitions of an n-element set 7(n).3 Clearly, 7(0) =
7(1) = 1. As we have just seen, 7(2) = 2,7(3) = 5. And what is the value of 7(n)
for an arbitrary n? Is it possible to find a simple formula for 7(n)?

As often happens in combinatorial problems, it is easy to find a recurrence
relation connecting 7(n) with the values 7(k) for & < n.

Let M = {a1,0a2,...,a,}. Let us arrange all the partitions of the set M ac-
cording to the number k of elements in the class into which the element a; will fall
in a given partition. The number k can be equal to any of 1,2,...,n. It is clear
that when k is fixed, the number of such partitions is equal to (::})T(n —k). In

that case, ]
7(n) = ; (:: :)'r(n — k).
It is easy to see that
g (:: ;)"(n- k) =§ (n; I)T(k),

and so finally, we have shown that

=3 (") ¥

k=0

With the aid of formula (7) it isn’t difficult to calculate that 7(4) = 15, 7(5) =
52, 7(6) = 203, 7(7) = 877, 7(8) = 4140: As n increases, the numbers 7(n) grow
quickly.
We'll use the recurrence formula (7) to prove a curious proposition in which
the number e makes an unexpected appearance:
111 21'! kﬂ
e-‘r(n)=ﬁ+§+--°+ﬁ+-n (n>1). (8)
PROOF. Let us apply the method of mathematical induction. When n =1,
equation (8) holds by virtue of (5). Let us now assume that (8) is true for all
nonnegative integers less than a certain n. Let us prove that in this case, it is

3Numbers of the type 7(n) are called Bell numbers (Kvant 1978, no. 7).
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true for n as well. According to (5) and our induction hypothesis, the following
equalities hold:

1 1
e¢(0)-1+1|+2,+ +L'+

1 k
e-7(1)= +2|+ "ttt

12 22 K?
e-7(2) = +2'+ +k'+

171 on—1 k-1

e-Tn—-1)= Tttt ot

(The infinite sums on the right-hand sides of these equations naturally must be
understood as the limits of partial sums.) Let us add these equations term by term
after multiplying the kth equation by (“;1), 0 < k <n—1. On the left-hand side,
according to (7), we obtain e - 7(n); on the right-hand side we get

©(1) | »(2) wlk) .
1+ 50+ S ek S 4o,
where
oft) = (n 1) + (n— l)t-l- (n- l)tz_'_ ot (n l)tn-l — (1+t)n—l.
1 2 1
It follows that
211——1 n—l (k"l' l)n-l
e-7(n)=1+ 1' -t o +
=17 +2 ottt eyt

which is what we wanted to show.

From (8) we obtain the pretty formula

T(n)__z kK’

k=1

which is, however, inconvenient for computing 7(n). Below, we will derive direct
(in the sense of nonrecurrence) finite (not the sum of an infinite series) formulas for
calculating 7(n).

Let us call the rank of a given partition the number of classes of which it’s
composed. Let us denote by ¢, the number of partitions of rank &k that an n-
element set possesses.? It is evident that a rank can have values equal only to
1,2,...,n. Therefore,

T(n) =Y cnk. (9)
k=1
For k > n we define ¢, 1 = 0.

4The numbers c,, i are called Stirling numbers.
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It is easy to derive a recurrence relation for the numbers ¢, . Suppose M =
{a1,02,...,a,}, M’ = {as,...,an}. Let us break down the partitions of the set M
with rank k into two groups: those that contain the one-element set {a1} as a class
of the partition and those that do not. It is clear that there are as many partitions
of the first kind as there are partitions of the set M’ of rank k—1, that is, ch—1,k-1.
And there are k times as many partitions of the second kind as there are partitions
of the set M’ of rank k (the element a; can be placed in any of the k classes of the
partition of the set M’), that is, k - ¢o—1,x. Thus, forn > 1, k> 1,

Cnk = Cn—1k-1+k-Cp-1,k- (10)

Let us prove that forn > 1, k> 1,

k-
Crk =

1
s=0

(-1 - o)

sik—s—1)! ~ (1)

We shall let by, denote the right-hand side of (11). If k =1, then b,; =1 =
Cn1- f k> 1and n=1, then

k=1 ys 1 3K (k-1
by = Z s!(k(— s)—- 1)! . (k—1) Z(—I) ( s )

s=0 s=0

1- l)k_l =0=c.

1
= =i

Finally, if k > 1 and n > 1, then

k-1 k-1
_ k=) s (21)(k = s)" (k- s)
buie =3 si(k —s—1)! _§ si(k—s—1)!

s=0

=1 k-1
= L (-1)*(k - s)ﬂ-z (—1)""'1(}; _ s)n_gs
—hk; si(k—s—1)! +; si(k—s— 1)1

k-1
(1) (k= 8)" s
= k‘bn-l"*"'z si(k—s— 3)!

(_l)s-i-l(k . s)n—2
(s— DIk —s-1)!

s=1

k-1
=k-bpak+ )
s=1

k-2 —1Y34+2( 1 _ o — 1\n—2
kbt Y (s 1)

2 Sk —s—2)!
k-2
— I (-1)°(k—s—1)2
—;" 'bﬂ—l.k +§ s!(k— 3—2)! = k'bn—l.k +bﬂ—l|k—1'

In this way, both numbers ¢, . and b, ;. satisfy the same recurrence relation of
the type (10); furthermore, their “initial values” for k = 1 (and any n > 1) and
n=1 (and any k > 1) coincide. Consequently (Figure 2), Cng =bpr foranyn>1
and k > 1.
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FIGURE 2
From (9) and (11) we have
n k=1 1)%(k — s)»—1
=32 (s!()k(— = )1)! ' (12)

Let us set k —s =%. Then 1 <t < n. For a fixed ¢ in the double sum (12) the
value of s can vary from 0 to n — ¢t. After collecting the coefficients for £*~1, we can
express formula (12) in the following way:

~1)% tn-l
=3 (5

t=1

The numbers ¢, x, which have a clear combinatorial meaning, suddenly appear
in a certain algebraic problem connected with polynomials.

Let us define z(!) = z, z® = z(zx - 1), z® = z(x — 1)(z — 2), and so
on. The polynomials 1,z(1),z(), ..., 2 are, respectively, of degree 0,1,2,...,n
Therefore, any polynomial whose degree in z is less than n can be expressed in only
one way as the sum of these polynomials (with certain coefficients). In particular,

" = an,lxm -+ a,,,g:rm + -+ an,n:c(“) (13)

for some numbers a, x, n > 1, 1 <k <n. For k > n, let us set a, = 0. It turns
out that a, ;. = cp.x. Let us prove this.

Assuming in (13) that z = 1, we obtain a3y =1=¢ga. fk>1land n =1,
then @y = 0=c; 4. Now let k£ > 1 and n > 1. We have

n n—1
z" =Zan ) =g.z" =2z Zan 1,2t
=1 i=
n—1

=Y ap:2?[(z—8) +i] = Za"'l i[2(z — 3) + i2®)]
i=1

n—1 n—1

- Zan—l,i [x(i“) + %'»I(ﬂ] = Zan-mwﬁ“} + i an—l.i?.-x(i}-

i=1 i=1 i=l
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Comparing the coefficients for z(*), we obtain ap 1 = ap—1,k—1+kan-1.k- As above,
from this it follows that a, ;. = ¢, for all n, k.

EXERCISE. Prove the following equality:

T(n—1)= Z( 1)’( )’r(n—t).

t=0

Addendum: Let us Calculate the Number e (by G. Sorokin)
Above we proved that the number

1 n
e= lim (1+—)
n—90o0 n

is equal to the sum of the series

1 1
e o O

1

However, it is possible to come up with a series whose partial sums approach e much
more quickly than the partial sums of this series. Below, we offer several exercises,
which, if you solve them, will enable you—by means of some easy computations—to
write down the decimal expansion of e to many decimal places.

EXERCISE 1. Prove that the following equality holds for n > 2:

1.1 11 1 1 1
1414 Gttt 5+ —s=3- - ——

3l nl 1-2-21 2-3-3 n—1)-n-nl’

Hint: Apply the method of mathematical induction.
EXERCISE 2. Prove that

ESe= Z(n+1t) (n+2) o

EXERCISE 3. Prove that

. _ 1
32 ,g(n+4)-(n+5)-(n+5)r

EXERCISE 4. Let

87 =, 1
Z «(n+4)-(n+5)- (n+5)!

— Ry..

Determine the remainder Ry.

EXERCISE 5. Calculate the approximate value of e using three elements of the
series in Exercise 4 and determine the error in your approximation.
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EXERCISE 6. Prove that

> 1
; B30 -(m+5) 5y < 00047

Translated by ILYA BERNSTEIN



