The Arithmetic of Binomial Coeflicients

D. B. FucHs AND M. B. FucHs
Every student knows the formulas

(1+2z)? =142z +22,
(1+2)® =1+ 3z + 322 4 23.

The numbers (1, 2, 1), (1, 3, 3, 1), as well as numbers obtained in an analogous way
by raising (1+z) to the fourth power, the fifth power, and so on, are called binomial
coefficients. This article deals with various properties of binomial coefficients. In
the first section we lay out the “general theory”: Most of the theorems we prove
here used to be part of the school curriculum. In the second section we will show
a very easy way to find the remainder when a binomial coefficient is divided by
a prime number. The third, and concluding, section deals with certain remark-
able properties of binomial coefficients. The main assertions in this section are
formulated as hypotheses. Perhaps the readers of Kvant! will try to prove them.

1. Definition and Simplest Properties of Binomial Coefficients.

If the binomial 1 + z is raised to some power n, where n is a natural number,
then the result will obviously be a polynomial of degree n (i.e., the greatest power
to which z will appear in this polynomial will be equal to n). For example:

1+2)°=1,
1+2) =14z,
(1+2) =1+2z+22,
(1+2)% =14 3z + 32> + 22,
(1+2)* =1+ 42 + 622 + 42° + 24,
(1+2z)° =1+ 5z + 102? + 102 + 5% + =5
The coefficients of these polynomials are called binomial coefficients. There is

a special notation for them: The coefficient of z™ in (1+z)™ is denoted by (). For

example, (?) =2, (3) =6, (3) = 10. Old algebra textbooks call the number ()
“the number of combinations of n things taken m at a time.” There are reasons for

The Russian original is published in Kvant 1970, no. 6, pp. 17-25.
1 Translation editor’s note: And the readers of this book!
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this, but we won't go into them here: For our purposes, they are not important.

Thus,
Q1+z)"= (:) + (T)x-!— (g)x2+---+ (:):c". (1)

From this, it is easy to obtain that

(a+2)" = (g)a“ + (T)a"“lx + (‘;"')ctz"“z:r:2 oot (:)m“

holds as well (all you have to do is apply formula (1) to (14 £)™ and then multiply
both sides of the resulting equation by a™). This last formula is called Newton’s
binomial. This is where the term “binomial coefficient” comes from.

It is clear that the numbers (") are nonnegative integers and that (;.) = 0
for m > n (the polynomial (1 + z)™ has degree n, and z™ with m > n doesn’t
appear in it). It is easy to convince yourself, furthermore, that (3) = (7) = 1. The
other binomial coefficients (), where 0 < m < n, can be found by raising 1+ z to
various powers. Their values for n < 10 are shown in Table 1.

TABLE 1. Binomial coefficients.

m|0}]1 (2] 3|4 |5 |6 |7 |(8]9](10
n
0 110(f0jo0jojoO0o|O|O]J]O|O]O
1 1j11j0f0jJ0]J0]JOfO]|]O|O]O
2 112|100 )JO0O|JO|[O0O]O|O]O
3 1{313] 1 0O|O0O]JO0O]J]O0O]|JOfO]|O
4 11416 4 1 0ofo0ojo0)j0|j0O}oO
5 1{5|10(10]| 5 1 Oo(fojojo0foO
6 116 (15| 20| 15| 6 1 0]1]0]107]0O0
7 11712113 |3 |21 7 110(0]0
8 18 (28|56 |70 (56 (28| 8 [1[/0]0
9 1(9)|36|8 (126|126 8 |36 (9 |1 |0
10 1/10)45]120(210|252)210|120 (45|10 1

We see that binomial coefficients increase rather rapidly. The observant reader
will notice certain patterns in the arrangement of these numbers. As a rule, such
patterns are easily deduced from the definition of binomial coefficients. We will
prove only the most important ones here. Let us begin with the most important
one of all, Pascal’s identity.

THEOREM 1 (Pascal’s identity).

()=o) (2 @
for all natural numbers n,m.

PROOF. By definition, (1) is the coefficient of z™ in the polynomial (14+z). In
order to find this coefficient, it is necessary, in principle, to multiply the polynomial
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1+ z by itself n times. Multiplying 1 + = by itself n — 1 times, we obtain the
polynomial
1+ (nzl)m+ (ngl):c2+---+m““.
Performing the final multiplication, we obtain
oo (e (7 oo
1 2
ofes ()2 () 0]
. n—1 n—1 n—1\| o 5
—1+[( 1 )+1]:c+[( 9 )+( 1 )]x S pRREE oF it
In the resulting equation the coefficient of z™ is equal to (') + (27}
Therefore,
()=(2)+ ()
— -+ )
m m m—1
which is just what we needed to prove. O

Pascal’s identity is useful for computing binomial coefficients. For instance, if
we want to put another (eleventh) row in our table, all we have to do is add in pairs
the adjacent numbers in the previous (tenth) row:

(o) =2 (6)=(s)*(5)=
(3)=(D)+(@)=  (7)=(7)+(5) -
(2)=(D) ()= (5)=(5)+(7) e
(5)=(3)+ ()1 (5)=(5)+(5)-=
(2)=(0)+(E) =2 (0)=(o)*(s) =2

11 10 10 11 10 10
— = = = 1.
()= () + (D) e ()= () o)

From this we can see that it is convenient to write down binomial coefficients
in the form of a triangular table (see Figure 1), called Pascal’s triangle.

Each number in Pascal’s triangle is equal to the sum of the two numbers above
it.

By using Pascal’s identity we can also obtain the general formula that expresses
() as a function of n and m.
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FIGURE 1. Pascal’s triangle.

THEOREM 2 (Formula for binomial coefficients).
(n) _nn-1)---(n—m+1)

m 1-2.--m

for all natural numbers n and m.

©))

PRrOOF. We will use the method of mathematical induction. If n = 1, then

formula (3) is true:

1 1
()11
1

1
(m) =0= T2 m , m>1.

Let us assume that
(n-l) = (n=1)(n—-2)---(n—m)

m 1-2..-m ’ m=1’2’3,...
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for some n. Then, if m > 1,

()= (a)+(003)

_ n-1)(n-2)---(n=-m+1)(n—m) + n-1)(n-2)---(n—m+1)

1-2.--(m—-1)m 1-2---(m—1)
_[(n=1)(n=2)---(n—m+1)] [n—-m
N 1-2---(m—1) [ m +1]
_[(n—l)(n—2)---(n—m+1) n
. 1-2---(m—1) ]'E
_nn=1)(n—-2)---(n—m+1)
- 1-2..-m .

If m = 1, on the other hand, then

) =CA0+ G-+ =2 +1=1

Thus (3) holds for n = 1, and if it holds for n — 1, it also holds for n. This
proves formula (3) for all n. (]

We recommend that the readers who encounter formula (3) for the first time
derive from it the equalities that are already familiar to us: () = (7) =1 and
() =0 for m > n.

Formula (3) is already interesting by the very fact that the fraction that ap-
pears on its right-hand side is equal to an integer, i.e., that all the numbers in the
denominator will be canceled by numbers in the numerator.

‘We shall use the following theorem later on.

THEOREM 3. If the numbers n and m are relatively prime (i.e., if the greatest
common factor of n and m is equal to 1), then (1) is divisible by n.

PROOF.
n\ n(n-1)(n-2)---(n—m+1)
() = 2=
. n n=-1)(n-2)---(n-m+1)
T m 1-2---(m—1)
n [n-1
m (m—l)'
Thus

() =(n"3)

That is, the number m () is divisible by n. But since m and n are relatively prime,

i.e., m is not divisible by any prime factor of the number =, it follows that () is
divisible by n. O

For example, (3) = 126 is divisible by 9; (7)) = 120 is divisible by 10. Let us
have a look at several other properties of binomial coefficients:
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L (::1) . (n-’-tm :
2 (7)+ () 4+ () = ("),
3 Q)+ ()4 + () =2

LQ+E+@+=Q+E+E) +-
We leave the proofs of these properties to the reader.

2. Remainders in Dividing Binomial Coefficients by Prime Num-
bers.

In this (as well as the next) section we will often have to use the sentence
“integers a and b have equal remainders after division by p.” Usually, this sentence
is abbreviated by the expression @ = b (mod p). In other words, the formula a = b
(mod p) means that a — b is divisible by p. For instance, 4 =1 (mod 3), 999999 =
222222 (mod 7). The formula a = b (mod p) is sometimes read as follows: “The
number @ is congruent to the number b, modulo p.” (However, we are not going to
use this expression.)

Here are two obvious properties of the symbol “=":

1. If a=b (mod p) and k is an integer, then ka = kb (mod p). For if a — b is

divisible by p, then ka — kb = k(a — b) is also divisible by p.

2. If a=b (mod p) and b= ¢ (mod p), then a = ¢ (mod p).

Indeed, if a—b is divisible by p and b—c is divisible by p, then a—c¢ = (a—b)+(b—c)
is also divisible by p.

Let us recall that any natural number a can be divided by a natural number p
“with a remainder”; i.e., the number a can be written down in a unique way in the
form a = bp + ¢, where b and c are integers with 0 < c < p.

The main purpose of this section is to prove the following assertion.

THEOREM 4. Let p be a prime number and let m,n be natural numbers. Fur-
thermore, let k and | be the quotients after division of m and n, respectively, by p,
and let s and t be the respective remainders (i.e., m = kp+ s, n = lp+ t, where
k,l,s,t are integers and 0 < s <p, 0 <t <p). Then

(:a) = (Ilc) ' (:) (mod p).

As we will see below, this theorem allows us to find remainders in the division
of binomial coefficients by prime numbers with almost no calculation.
The proof of Theorem 4 is preceded by three lemmas.

LEMMA 1. The following equality holds:®
ofF —b* = (a—b)(a* ' +aF 2+ - + abF 2 4 b5 Y.
PROOF. The proof is obvious: By carrying out the multiplication on the right-

hand side of the equation and simplifying what can be simplified, we obtain the
expression on the left-hand side. O

LEMMA 2. If p is a prime number and 0 < r < p, then () is divisible by p
(i.e., without remainder).

2This proposition, of course, has no relation to binomial coefficients. We have isolated it into
a separate lemma in order to simplify the proof of Theorem 4.
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Proor. This follows from Theorem 3: Since p is a prime and r < p, the
numbers 7 and p are relatively prime. ()

(We note that the primality of the number p is not used anywhere else in the
proof of Theorem 4; nevertheless, for a nonprime p, the assertion of the theorem
does not hold.)

LEMMA 3. The polynomial (1 + z)? — (1 + 2P) is divisible by p (i.e., each co-
efficient of this polynomial is divisible by p).

Proor. Indeed,

A+z)-(Q+2°)=1+ G’)x+---+ (pfl)mp-‘+mp—1—xp

(e ()

The last expression is divisible by p by virtue of Lemma 2. O

And now we move on to proving Theorem 4.
PROOF OF THEOREM 4. Let us look at the polynomial
P(z) = (14 2)"?* — (1 + 2)*(1 +2P)".
This polynomial is divisible by p. Indeed, by Lemma 1,
P(z)=(+2) [(1 +a)? —(1+ mp)‘]
= (1 +2) [Q+2)° — (1+27)] [(1 +2)PY 44 zﬂ)“‘]

According to Lemma 3, the second factor is divisible by p; therefore, the entire
product is also divisible by p.

Let us determine the coefficient of z¥P+¢ in P(z). As we know, z*P** appears
in (14 z)'P*t with the coefficient ( i};‘_'l'_i) As for the product (14 z)(1+2P), it is
equal to

[1 + (:)m-i- (;)x2+---+:c*] [1+ (i)m”+ (;):::23’-}- ...+:.-,'P]
o

O ()
+ (;) (;)3:2""'2 - (;)ﬁwt+...

+z'? + (t) gt 4 (t) P2 ... gl
1 2

Since t < p, it follows that in the last sum, each power of the variable 2 never

appears more than once. As can be seen, the coefficient of z*P*+* is equal to HO

(in particular, if s > ¢, then this coefficient is equal to zero).
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Thus, the coefficient of z*7** in P(z) is equal to (;23%) — () (;)- Since P() is

divisible by p, (;2+%) — (;) () is divisible by p as well, which is just what we needed
to prove. O

Let us now show how the theorem we have just proved can be used to find the
remainders in dividing binomial coefficients by prime numbers. Let us figure out,
for example, the remainder when the number (%) is divided by 5. (Of course, this
can also be done by figuring out (%) according to formula (2), but that would
require a lot of work. After all, () is a 24-digit number!)

Dividing the numbers 119 and 33 by 5, we obtain 119 = 23.5+4 and 33 = 6-5+3.
By the theorem, (') = (%) (3) (mod 5). In an analogous way we may investigate
the number (%). We have 23 =4-5+3,6=1-5+1, and therefore (%) = (1) (})
(mod 5). According to the first property of the symbol = (cf. the beginning of
this section), (£)(3) = [(})(2)] (3) (mod 5). According to the second property of
the symbol =, we have that (%5) = (3) (fg) (3) (mod 5). Thus (%) has the same
remainder when divided by 5 as does (7) () (3) =4-3-4 =48, i.e., the number 3.

In an analogous way we can find the remainders when the number (%) is
divided by other prime numbers. For example:

119 99\ /1 59
119=59-2+4+1,33=16-2+1= (33) = (16) (1) = (16) (mod 2);

59\ _ [29\ /1\ _ (29 )
59=29:-2+1,16=8-2+0=> (16)= (8)(0) _(8) (mod 2);
20\ _ (14\(1\ _ (14 _
29-—14-2+1,8—4-2+0=>(8)=(4)(0)—(4) (mod 2);
1

14=7-24+0,4=2-2+0=> (:)

D0~ oo

7\ _ (3\ (1) _ (3) _ .
7_3-2+1,2._1-2+0=>(2)=(l)(0)_(1 =3 (mod 2);
2

Thus, (1:,'1:) has the same remainder after being divided by 2 as 3 does, namely, a
remainder of 1; that is, ('5) is an odd number.

Another example:

119 39\ /2 39
119=39-3+2, 33=11- = = :
+2,33=11-34+0=> (33) (11) (0) (11) (mod 3);

39=13-34+0,11=3-34+2= (ﬁ) = (133) (g) =0 (mod 3).

Here we have made use of the fact that (3) = 0, since 2 > 0. It turns out, then,
that (%,7) =0 (mod 3), i.e., (%) is divisible by 3.

Let us note that if we apply Theorem 4 to (), where n > m, then, writing
m =kp+s, n=lp+t, we will of course get I > k; however, it is impossible to
predict which of the numbers s, ¢ will turn out to be larger. If s > ¢, then according
to our theorem, () = (£)(}) = 0 (mod p). That is, (") is divisible by p. As we
have seen, in order to determine the remainder when the number (1) is divided by
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», Theorem 4 generally has to be used several times; and each time, a phenomenon
similar to the one described above can occur, and moreover, no matter when this
happens, it means that the initial number, (), is divisible by p. That was how we
determined that (13139) is divisible by 3.

We see that the greater n is, the more likely it is that the number () is
divisible by p. It is easy to prove the following, more precise, assertion: In all,
there are ’—(-Eiﬂ numbers (2), with 0 < n < p", 0 < m < n, of which exactly
ﬂ';"“—,.l): are not divisible by p (here p is a prime, r a natural number; the proof uses
only Theorem 3—we leave it to the reader). We should emphasize that for large
numbers 7, the number M is many times smaller than the number 'ﬂ-”—;ﬂ
Thus, for example, of the numbers (») with 0 < n < 35,0 < m < n, approximately
26.2 % are not divisible by 3. For 0 < n < 310, the number is approximately 3.6 %,
and for 0 < n < 319, it is approximately 0.45 %

In conclusion, let us say several words about the graphic interpretation of The-
orem 4 that can be obtained by examining “Pascal’s triangle modulo p.” This is
the table that can be obtained from Pascal’s triangle by replacing every number in
it by its remainder after division by p. We won’t prove any theorems about this
triangle, but instead we offer the reader Figure 2, Pascal’s triangle modulo 3. Think
about what the parts of these triangles that don’t appear in the picture look like.
Try to formulate Theorem 4 in such a way as to make it a theorem about Pascal’s
triangle modulo p.

8. A Brief Digression into the Remainders in Divisions of Binomial
Coefficients by Powers of Prime Numbers.

We won’t go into great generality about properties of remainders after division
of binomial coefficients by composite numbers. (However, readers can think about
this on their own. What, for example, is the remainder after division of the number
(i3) by 4? Is it 1 or 3?) We will limit ourselves to talking about one remarkable
and still not fully explained phenomenon.

Let us begin with some computations. Using formula (1) for binomial coeffi-

O+ G- O-n

16 32\ _
(s) = 12870; (1 6) = 601 080390.

(The reader will, of course, have noticed that 1,2,4,8,16,32,... are successive
powers of 2.) The actual numbers we obtain are not in any way remarkable. Their
successive differences, however, exhibit amazing properties. Let us look at them:

6—-2=4=2%
70 — 6 = 64 = 25;
12870 — 70 = 12800 = 2° - 25;
601080390 — 12870 = 601 067 520 = 22 - 146 745.
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FIGURE 2. Pascal’s triangle modulo 3.

We see that these differences are divisible by large powers of 2, and these powers
are so high that it is unlikely that this is just an accident. Indeed, we can prove a
theorem that at least partly explains this phenomenon.

THEOREM 5. For n > 1, the number

2n+l on
o ( 2n ) B (2"-1)
is divisible by 22n+2,

REMARKS.

1. The assumption that n > 1 is significant, since ; is equal to 4 and is not
divisible by 221+2 = 24 = 16.

2. It seems plausible that for n > 1, , is divisible even by 23”: This is true
for n = 2,3, 4, but it is something that none of us has yet been able to prove
or disprove in general.
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PROOF OF THEOREM 5. Let us begin with the general observation that if the
number 7 is odd, then (2: ) is divisible by 2". Indeed, since r is odd and 2" has
no prime factors other than 2, the numbers r and 2" are relatively prime, and the
assertion follows from Theorem 3.

Now let us define

P(z)=(1+z)>"" - (1-2%)?".

The polynomial P(z) has the term 22" with coefficient (% ) — (,27) = a. (Here
we use the fact that n > 1: By raising (1 — 2%) = 1 + (—2?) to the power 2", we
obtain next to the coefficient (23:,) not 22", but (—z2)2"" = (-1)2"" 22", while
the number (—1)2""" is equal to 1 when n > 1 and to —1 when n = 1.)

On the other hand,

Pz)=1+2)*" —(1+2)> 1-2)¥
= +a [a+2y -1~ z)”"].

At the same time

(1+2)”" = (1-2)" =1 +2)" - 1+ (-2))”
=1+ (;)x+ (2;):.:2—}- (2::)3:3+---+m2"
=5 (5) o

- (%) ol = -

(since (—z)* is equal to =* when k is even and to —z* when k is odd)
=2 (1)x+(3)x +(5):c + -
2"\ 2na
()]

Note that x appears in the resulting polyr'l‘omial only to odd powers.
We want to know the coefficient of 22" in P(z), i.e., in the product

A+z)* [(1 +2) —(1- m)zﬂ]
= 2(1 + (2:):.:-1- (2;)3:2+ (23'1):83_'_.“_*_:2-:)
X (( :):B + (2::)3;3 + (25“)3;5 +oet (2n2i l)mzn—l) .

Obviously, the term in 22" can be obtained by multiplying the 2"~ term from the
first factor by the = term from the second, by multiplying the 22" ~3 term from the
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first factor by the z° term from the second, and so on. In this way, the coefficient
of z2" in P(z), which, as we know, is equal to ap, is also equal to

2 [(21.,) (2“2j- 1) o (3) (2“2i 3) ot (2"21 1)(:)]

As we know, each of the numbers (%), (%), .., (,2_,) is divisible by 2". Therefore,
each of the terms in the square brackets is divisible by 2™ - 2" = 227 Moreover, a
2 stands in front of the entire expression, and in addition, each term in the square
brackets appears twice. Thus o, is divisible by 227*+2, which is what we wanted to
show. O

Thus, the strange phenomenon of the divisibility of the numbers a, by high
powers of two has to some extent been explained. But something similar can be
observed when the 2 is replaced by 3, 5, or 7. Indeed,

@ B @ =S

(2:) _ (g) = 4686825 — 84 = 4686741 = 37 - 2143;

(2;) - (297) = 2306 279 447 501 851 002 720 — 4686 825

25) _ (5
5 1
49 7 s
7)1 = 85900584 — 7= 85900577 = 7° - 5111.
In short, it appears to be the case that for prime numbers p the integer
pn+1 p‘n
( " ) - (xf'")

is divisible by a high power of the number p. But proving this is something that
none of us has yet figured out how to do.3
By the way, if p is not prime, then nothing whatsoever like this occurs. For

example,
16 4
(4) - (1) = 1820 — 4 = 1816

isn't even divisible by 42, and

(366) N (‘:) = 1047792 — 6 = 1947786

isn’t even divisible by 62.
We take it for granted that some reader of Kvant will be able to clarify this
complicated question of the arithmetic of binomial coefficients.

Translated by ILYA BERNSTEIN

= 2306 279 447 501 846 315895 = 310- 39057 044 954 221 855;

43130 — 5 = 43,125 = 55 - 69;

3See the article by Shirshov in this volume, pp. 49-55.



