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Large Values of x and the
Multiplication Formula

Can we find an elementary function that gives an accurate approximation
of I'(x) for large values of x? If the growth of n! is estimated, it is found to
increase with 7z faster than n"e~", but not quite as fast as n"+le=".* In other
words, the growth of I'(n) is caught between n"~'e™" and n"e~". This suggests
that we consider a function of the form

\.A&v = x2x-1/2 p—2 mtﬁf Aw.—v

in order to study the behavior of I'(x) for large x. Our goal is to make f(x) satisfy
the basic conditions for the gamma function by choosing u(x) in an appropriate
way.

If we replace x by x + 1 in Eq. (3.1) and divide the resulting expression
by Eq. (3.1), we get

E —v — P N..L\w \u AB:IAHV
\A%Ivl = A_ + .R.v xe™ eplx+l)—puizl,
This shows that f(x) satisfies condition (1) in Theorem 2.1 if, and only if,

W) — e+ 1) = (e + Dlog (1 +2) — 1, (3.2)

holds for u(x).

* If we consider the elementary inequalities
- k — k41
A_ +w.v AQAA. +ﬂv
for k=1, 2, =, (n — 1), and multiply them together, we get

!=|— < - < n*
=1 ¢ =0l

This leads to the approximation
ente™" < n! < en"*le".
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We denote the right side of Eq. (3.2) by g(x). A function x(x) with this
property is easy to find. If we set

m(x) = M% + n), (3.3)

ned

then Eq. (3.2) holds, provided the infinite series in Eq. (3.3) converges. Let us
postpone the proof of convergence for a moment and consider condition (2)
of theorem 2.1.

The factor x*~42 ¢~ in Eq. (3.1) is log convex because the second derivative
of its logarithm, 1/x + 1 %, is always positive when x is positive. If we can
show that the factor e+ is log convex, in other words that u(x) is convex, then
f(x) also satisfies condition (2). This means that the function f(x) determined
by the particular u(x) we defined in Eq. (3.3) will agree with I'(x) to within a
constant factor. Our u(x) is convex if the general term of the series g(x + #)
is convex. To show this, it suffices to prove the convexity of g(x) itself. But
we have

. 1
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> 0.

The convergence of the series in Eq. (3.3) still remains to be shown. We
will combine this with an approximation of the function u(x). Let us begin by
considering the expansion

Ity _y ¥ ¥, ..

which is valid for |y | < 1. Now we replace y by 1/(2x + 1). The resulting
expansion is valid for positive ¥ because 1/(2x + 1) < | whenever x > 0.
We multiply this equation by 2x + 1 and bring the first term on the right side
over to the left side:

(x + $)log (1 +.$ — 1 =g(x)
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This expression again shows that g(x) is convex, since every term on the right
side is convex. Now we can approximate g(x). If the integers 5, 7, 9, - are all
replaced by 3, then the value of the right side increases. The result is an infinite
geometric series, having 1/(3(2x + 1)?) as its first term and 1/(2x + 1) as its
ratio. Its sum is
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But g(x) is positive, hence

!
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Since every term of the series in Eq. (3.3) is positive, it suffices to show the
convergence of

= 1
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which converges trivially to the limit 1/12x. This not only proves our assertion,
it also gives the approximation .
0 < p(x) < == i Nx

In other words,

t.ARV -N.x

where 8 is a number independent of x between O and 1.
By a suitable choice of the constant a, we get

I(x) = ax=-1/2 g=2+1(2) = gy=-1/2 g=2+6/122 (3.9)

If we let x be an integer 7 and multiply the expression by n, we get the appro-
ximation

3_ — &§=+:m mla..._w\-&:. Au.Mv

We are now going to find the exact value of this constant @ and determine
some other important constants at the same time.
Let p be a positive integer. We consider the function

—per (&) r (. ppt2 =l
\AxvlvﬁAvvﬁA ? v N..A. ? i.
for x > 0. The second derivative of log p* is zero, and each of the functions
I((x + #)/p) is obviously log convex. This implies that f(x) is also log convex.
If we replace ¥ by x + 1, p* takes on the factor p, I'((x + 7)/p) goes over into
the next factor, and I'((x + p — 1)/p) becomes .

x x x
ri—+1)==—r(—j.
=56
In other words, f(x) is multiplied by x. Our function again satisfies the conditions
(1) and (2) in Theorem 2.1; therefore,
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where a,, is a constant depending on p. For x = 1 in Eq. (3.6), we have

su_z, ﬁwv w @ lwv . a.d

If we set x = k/p in Eq. (2.7), then a simple manipulation gives

»,:i.%:.l
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Now we set k = 1, 2, -+, p, one after the other, and multiply all these expressions
together. Factors of the form (k + hp) appear in the denominator, where %
runs from 1 to p, and A runs from 0 to n. For A = 0 we get the numbers from
1 to p; for A = 1, the numbers from p + 1 to 2p; and so on. The product in
the denominator is obviously (np + p)!. The final result is

n+Lplyr purtl

(np + p)!

=rm
The well-known infinite product

= tim (14 ) (0 ) 1+ )

which can be written as

(np + p)!

I = lim —*—

w (np) (np)?

can now be applied. If we multiply this last expression with the above identity
for @, , we obtain

Ax_vw i
p=plim o % (np) ntp—072
But Eq. (3.5) implies that
Aa_vu —_ m====+=$ e ™ @SEE:,

A!Vv_ — QAS@VQ:....:» NI:% men:msu.
After making the appropriate substitutions above, we obtain

a, = /\3 2”7 lim m.o»u:milgn:?%.‘
n =0

and finally
= )\.m Qvlp. Au.mv
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By evaluating a, with the help of Eq. (3.7) and then comparing the result with
Eq. (3.8), we get

2 =2"H I (1) =2vVr=av2.
But this determines the exact values of our constants:
= V2 and a, = pV3(2m)te-1112,

Now we gather together all the important expressions from this, chapter:

(%) = V/2m x3-1/2 g=z4ul2), .

(%)

M,.?+=+w:o£_+t_lv|_ u%w, 0<o<l,

= /D nnHLI2 g=ni0N12n (3.9)

ﬁAWW ﬁAaH _v ﬁAa+M - J _ Auwwﬁ.\w:» (). (3.10)

In particular, for p =2

x .« a
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The formulas in Eq. (3.9), which describe the behavior of I'(x) for large
values of x, are called Stirling's formulas. If our approximation of u(x) is used,
the accuracy of the formula for I'(x) will increase as x increases. This is also
true for estimates of n! The relative accuracy for n > 10 is already quite high.

The functional equation (3.10), discovered 5 Gauss, is called Gauss’
3&525:83 Jformula. By replacing x by px in Eq. (3.10), we obtain an expres-
sion for I'(px) as the product of factors, each of the form I'(x + (k/p)). This fact
gave rise to the name “multiplication formula.” The most important special
case is p = 2. It was discovered by Legendre and is often referred to as Legendre’s
relation,
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The Connection with sin x

The gamma function satisfies another very important functional equation.
In order to derive it, we set

o(x) = I'(x) I'(1 — x)sin =x, 4.1)

This function is only defined for nonintegral arguments. If we replace x by
x + 1, then I'(x) becomes xI'(x). The function I'(1 — %) becomes
g - x)

— X

I'(—x) =

and sin mx changes its sign. This means that ¢(x) is left fixed, and is therefore
periodic of period 1:
glx + 1) = gx). @2)

The Legendre relation can be written in the form

.p. ;.a.+_||a
I(3) T {57) =02 I,
where b is a constant, Actually, the exact value of  was determined in Chapter 3.
But this extra information need not (and will not) be assumed here. As far as
we are concerned now, b is just some particular constant.

In the expression above, we replace x by 1 — x:

2_ lf.c |i 2= (1 — x).

Now we consider

P ()5 =TG- P T r(F) (T T

m I(x) I(1 — x) sin mx,

and we get the relation

2 (3) e (C31) = dote, 43)
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