Problem set 8 (modified) (The last one!)
Do for Monday, June 4.
Rudin p. 196: 13
Also:

1. Suppose $f:[0, \pi] \rightarrow \mathbb{R}$ is continuous and $\int_{0}^{\pi} f(x) \sin n x=0$, $n=1, \ldots$ Does it follow that $f \equiv 0$? Proof or counterexample.
2.

(a) Find a sequence of polynomials $\left\{P_{n}(x)\right\}$ and a continuous function f such that $P_{n}(x) \rightarrow f(x)$ pointwise on $[0,1]$, but not uniformly.
(b) Suppose that N is fixed and $\left\{P_{n}(x)\right\}$ is a sequence of polynomials of degrees $\leq N$. Show that if there is a function f on $[0,1]$ such that $P_{n}(x) \rightarrow f(x)$ pointwise on $[0,1]$, then the convergence is uniform. You may assume that the coefficients of the polynomials $\left\{P_{n}(x)\right\}$ are uniformly bounded in n. (The hypothesis actually implies this assumption; see the notes for Weeks 9-10.). (Not so easy!)
3. If f is real analytic in a neighborhood of x_{0} and $f\left(x_{0}\right)=0$, show that $f(x) /\left(x-x_{0}\right)$ is real analytic in the same neighborhood.
4. Prove that if $f(x)$ is real analytic on (a, b) and $c \in(a, b)$, then $F(x)=\int_{c}^{x} f(t) d t$ is also real analytic on (a, b).
5. Prove that $x^{n} \rightarrow 0$ in the L^{2} metric on $[0,1]$, but not in the uniform metric.
6. Consider the subset $\mathcal{F} \subset \mathcal{C}([0,1])$ given by

$$
\mathcal{F}=\{f \in \mathcal{C}([0,1]):\|f\| \leq 1\}
$$

Show that \mathcal{F} is closed, but not compact.

