Problem set 6

Do for Friday, May 11.

1. Prove that the family $\{\sin n x, n=1,2,3 \ldots\}$ is not equicontinuous on the interval $[-1,1]$.
2. Prove that the family of all polynomials of degree $\leq N$ with coefficients in the interval $[-1,1]$ is uniformly bounded and equicontinuous on any compact interval.
3. For any continuous, real valued function f on $[0,1]$, let $F_{f}(x)=\int_{0}^{x} f(t) d t$. Show that the set of functions

$$
\mathcal{F}=\left\{F_{f}:\|f\| \leq 1\right\}
$$

is bounded and equicontinuous.
4. Give an example of a metric space X and a sequence of functions $\left\{f_{n}\right\}$ on X such that $\left\{f_{n}\right\}$ is equicontinuous but not uniformly bounded.
5. Give an example of a uniformly bounded and equicontinuous sequence of functions on \mathbb{R} which does not have any uniformly convergent subsequences.
6. Let X be a metric space such that $X=\bigcup_{n=1}^{\infty} K_{n}$, where each K_{n} is compact and such that any bounded open set U is contained in K_{n} for some n. (An example is $X:=\mathbb{R}^{k}$ with $K_{n}:=\left\{x \in \mathbb{R}^{n}:\|x\| \leq n\right\}$.) Let $\left\{f_{j}\right\}$ be a sequence of functions which are pointwise bounded on X and whose restriction to any K_{n} is equicontinuous. Show that there exists a subsequence $\left\{f_{n_{j}}\right\}$ that converges to a continuous function on X.

Hint: Use a diagonal trick.

