Do for Friday, April 27

1. Suppose f is a real, continuously differentiable function on $[\mathrm{a}, \mathrm{b}]$ with $\mathrm{f}(\mathrm{a})=\mathrm{f}(\mathrm{b})=0$, and

$$
\int_{a}^{b} f^{2}(x) d x=1
$$

Show that

$$
\int_{a}^{b} x f(x) f^{\prime}(x) d x=-1 / 2
$$

2. Prove that if $f \in \mathcal{R}[a, b]$ and g is a function for which $g(x)=f(x)$ for all x except for a finite number of points, then g is Riemann integrable. Is the result still true if $g(x)=f(x)$ for all x except for a countable number of points?
3. Let $f:[0, \infty) \rightarrow \mathbb{R}$ be defined as $f(x)=0$ if $0 \leq x \leq 1 / 2$ and $f(x)=1$ if $1 / 2<x \leq \infty$. Show that the function

$$
F(x)=\int_{0}^{x} f(t) d t
$$

defined for $0 \leq x<\infty$, is differentiable for $x \neq 1 / 2$ and is not differentiable for $x=1 / 2$.
4. Prove that if f and g are Riemann integrable on $[a, b]$ (i.e. $f, g \in \mathcal{R}[a, b]$) and there exists $N>0$ such that $g(x) \geq 1 / N$ for all $x \in[a, b]$, then $f / g \in \mathcal{R}[a, b]$. (Hint: First show $1 / g \in \mathcal{R}[a, b]$, and then use Theorem 6.13.)

