Math 140a - HW 7 Solutions

Problem 1 (WR Ch 4 \#14). Let $I=[0,1]$ be the closed unit interval. Suppose f is a continuous mapping of I into I. Prove that $f(x)=x$ for at least one $x \in I$.

Solution. Let $g(x)=x-f(x)$, which is also continuous. If $g(x)=0$ for any $x \in I$, then we have proven the result, so assume by way of contradiction that $g(x) \neq 0$ for any $x \in I$. Since $f(0) \in[0,1]$, $g(0)=0-f(0) \leq 0$, and since we are assuming $g(0) \neq 0$, then $g(0)<0$. Also, since $f(1) \in[0,1]$, $g(1)=1-f(1) \geq 0$, and since we are assuming $g(1) \neq 0$, then $g(1)>0$. Then by the Intermediate Value Theorem, there is some $x \in(0,1)$ such that $g(x)=0$, a contradiction.

Problem 2 (WR Ch 4 \#15). Call a mapping of X into Y open if $f(V)$ is an open set in Y whenever V is an open set in X.

Prove that every continuous open mapping of \mathbb{R}^{1} into \mathbb{R}^{1} is monotonic.

Solution.

Claim (1). $a \neq b \Longrightarrow f(a) \neq f(b)$.
Since f is a continuous function on a compact set, Theorem 4.16 says it must attain its maximum and its minimum, so let

$$
M=\sup _{x \in[a, b]} f(x) \quad \text { and } \quad m=\inf _{x \in[a, b]} f(x)
$$

and there must be some $z_{1}, z_{2} \in[a, b]$ such that $f\left(z_{1}\right)=m$ and $f\left(z_{2}\right)=M$.
If $M=m$, then f is constant on $[a, b]$, but then $f((a, b))=\{M\}=\{m\}$ is just a point, which is not an open set, contradicting the openness of f. Therefore, we can assume $M>m$. There are four cases left:

Case 1: $f\left(z_{1}\right)=m$ for some $z_{1} \in(a, b)$.
$f((a, b))$ contains $z_{1} \in \mathbb{R}$ but does not contain any real numbers less than z_{1}. Then any neighborhood N of z_{1} will contain real numbers less than z_{1}, and N thus cannot be contained in $f((a, b))$, so it is not open, a contradiction.

Case 2: $f\left(z_{2}\right)=M$ for some $z_{2} \in(a, b)$.
$f((a, b))$ contains $z_{2} \in \mathbb{R}$ but does not contain any real numbers more than z_{2}. Then any neighborhood N of z_{2} will contain real numbers more than z_{2}, and N thus cannot be contained in $f((a, b))$, so it is not open, a contradiction.

Case 3: $f(a)=m$ and $f(b)=M$
Then $f(a) \neq f(b)$.

Case 4: $f(a)=M$ and $f(b)=m$
Then $f(a) \neq f(b)$.
Claim (2). If $a<b<c$ and $f(a)<f(b)$ then $f(b)<f(c)$.
Case 1: $f(c)=f(a)$.
Since $c \neq a$ this case contradicts claim 1 .
Case 2: $f(c)=f(b)$.
Since $c \neq b$ this case contradicts claim 1 .
Case 3: $f(c)<f(a)$.
Then $f(c)<f(a)<f(b)$, and by the Intermediate Value Theorem there is some $d \in(b, c)$ such that $f(d)=f(a)$, but $a \notin(b, c)$, so $a \neq d$, contradicting claim 1 .

Case 4: $f(a)<f(c)<f(b)$.
Then $f(a)<f(c)<f(b)$, and by the Intermediate Value Theorem there is some $d \in(a, b)$ such that $f(d)=f(c)$, but $c \notin(a, b)$, so $c \neq d$, contradicting claim 1 .

The only case left is $f(c)>f(b)$, and since all the other cases lead to contradictions, this is the only possible one.

Finally, if we assume f is not monotonic, then either there are some $a<b<c$ such that $f(a)<f(b)$ and $f(c)<f(b)$ or there are some $a<b<c$ such that $f(a)>f(b)$ and $f(c)>f(b)$. The first case contradicts claim 2. The second case turns into the first case if we replace $f(x)$ by $-f(x)$, which is still a continuous, open function.

Problem 3 (WR Ch 4 \#17). Let f be a real function defined on (a, b). Prove that the set of points at which f has a simple discontinuity is at most countable.

Solution. A simple discontinuity is a point x where f is discontinuous but where $f(x+)$ and $f(x-)$ exist. There are three possible types of simple discontinuities we have to deal with:

Type 1: $f(x+)>f(x-)$.
For every simple discontinuity x of this type assign three rational numbers (p, q, r) such that
(a) $f(x-)<p<f(x+)$,
(b) $a<q<t<x \quad \Longrightarrow \quad f(t)<p$,
(c) $x<t<r<b \quad \Longrightarrow \quad f(t)>p$,

This is always possible because: for (a), \mathbb{Q} is dense in \mathbb{R} so there is a rational number in the open interval ($f(x-), f(x+)$); for (b), $f(x-)$ exists, so for $\epsilon=(p-f(x-))$ there exists some $\delta>0$ so that $0<x-t<\delta$ implies $f(t)-f(x-)<\epsilon=p-f(x-)$, implying that $f(t)<p$, and
there is a rational number in the interval $(x-\delta, x)$ because \mathbb{Q} is dense in \mathbb{R}; for (c), we use a similar argument as for (b).

So we have shown that such a triple of rational numbers always exists. Now we need to show that it is unique. Assume there exists another number $y \neq x$ such that
(a) $f(y-)<p<f(y+)$,
(b) $a<q<t<y \quad \Longrightarrow \quad f(t)<p$,
(c) $y<t<r<b \quad \Longrightarrow \quad f(t)>p$,
and assume without loss of generality that $x<y$. Then there exists some $t \in \mathbb{R}$ such that $x<t<y$, and thus
$\left.\begin{array}{rlr}\text { By property (c) for } x: x<t<r<b & \Longrightarrow & f(t)>p \\ \text { By property (b) for y: } a<q<t<y & \Longrightarrow & f(t)<p\end{array}\right\} \quad$ a contradiction.
Therefore our system assigns a unique triple of rational numbers to every simple discontinuity of this type, and since \mathbb{Q}^{3} is countable, the simple discontinuities of this type are countable.

Type 2: $f(x+)<f(x-)$
For every simple discontinuity x of this type assign three rational numbers (p, q, r) such that
(a) $f(x+)<p<f(x-)$,
(b) $a<q<t<x \quad \Longrightarrow \quad f(t)>p$,
(c) $x<t<r<b \quad \Longrightarrow \quad f(t)<p$,

This is always possible because: for (a), \mathbb{Q} is dense in \mathbb{R} so there is a rational number in the open interval ($f(x+$), $f(x-)$); for (b), $f(x-)$ exists, so for $\epsilon=(f(x-)-p)$ there exists some $\delta>0$ so that $0<x-t<\delta$ implies $f(x-)-f(t)<\epsilon=f(x-)-p$, implying that $f(t)>p$, and there is a rational number in the interval $(x-\delta, x)$ because \mathbb{Q} is dense in \mathbb{R}; for (c), we use a similar argument as for (b).
So we have shown that such a triple of rational numbers always exists. Now we need to show that it is unique. Assume there exists another number $y \neq x$ such that
(a) $f(y+)<p<f(y-)$,
(b) $a<q<t<y \quad \Longrightarrow \quad f(t)>p$,
(c) $y<t<r<b \quad \Longrightarrow \quad f(t)<p$,
and assume without loss of generality that $x<y$. Then there exists some $t \in \mathbb{R}$ such that $x<t<y$, and thus
$\left.\begin{array}{rll}\text { By property (c) for } x: x<t<r<b & \Longrightarrow & f(t)<p \\ \text { By property (b) for y: } a<q<t<y & \Longrightarrow & f(t)>p\end{array}\right\} \quad$ a contradiction.

Therefore our system assigns a unique triple of rational numbers to every simple discontinuity of this type, and since \mathbb{Q}^{3} is countable, the simple discontinuities of this type are countable.

Type 3: $f(x+)=f(x-)$
Let $z=f(x+)=f(x-)$. For every simple discontinuity x of this type assign two rational numbers (q, r) such that
(a) $a<q<t<x \quad \Longrightarrow \quad|f(t)-z|<|f(x)-z|$,
(b) $x<t<r<b \quad \Longrightarrow \quad|f(t)-z|<|f(x)-z|$,

This is always possible because: for (a), $f(x-)$ exists, so for $\epsilon=|f(x)-z|$ there exists some $\delta>0$ so that $0<x-t<\delta$ implies $|f(t)-z|<\epsilon=|f(x)-z|$, and there is a rational number in the interval $(x-\delta, x)$ because \mathbb{Q} is dense in \mathbb{R}; for (b), we use a similar argument.

So we have shown that such a triple of rational numbers always exists. Now we need to show that it is unique. Assume there exists another number $y \neq x$ such that
(a) $a<q<t<y \quad \Longrightarrow \quad|f(t)-z|<|f(y)-z|$,
(b) $y<t<r<b \quad \Longrightarrow \quad|f(t)-z|<|f(y)-z|$,
and assume without loss of generality that $x<y$.
$\left.\begin{array}{lll}\text { By property (b) for } x: x<y<r<b & \Longrightarrow & |f(y)-z|<|f(x)-z| \\ \text { By property (a) for } y: a<q<x<y & \Longrightarrow & |f(x)-z|<|f(y)-z|\end{array}\right\} \quad$ a contradiction.
Therefore our system assigns a unique pair of rational numbers to every simple discontinuity of this type, and since \mathbb{Q}^{2} is countable, the simple discontinuities of this type are countable.

Problem 4 (WR Ch 4 \#21). Suppose K and F are disjoint sets in a metric space X, K is compact, F is closed. Prove that there exists $\delta>0$ such that $d(p, q)>\delta$ if $p \in K, q \in F$.

Show the conclusion may fail for two disjoint closed sets if neither is compact.
Solution. First we show that $\rho_{F}(x)$ is a continuous function, where $\rho_{F}(x)$ is defined by

$$
\rho_{F}(x)=\inf _{y \in F} d(x, y)
$$

Notice that if we pick any $z \in F$, then for any $x, y \in X$,

$$
\rho_{F}(x) \leq d(x, z) \leq d(x, y)+d(y, z)
$$

and taking an infimum of both sides with respect to all $z \in F$, we have

$$
\rho_{F}(x) \leq d(x, y)+\inf _{z \in F} d(y, z)=d(x, y)+\rho_{F}(y) \quad \Longrightarrow \quad \rho_{F}(x)-\rho_{F}(y) \leq d(x, y)
$$

Repeating the same process but switching the x and y, we get $\rho_{F}(y)-\rho_{F}(x) \leq d(y, x)$, and putting this together with the previous inequality, we finally have

$$
\left|\rho_{F}(x)-\rho_{F}(y)\right| \leq d(x, y)
$$

So for any $\epsilon>0$, if we let $\delta=\epsilon$, we have

$$
d(x, y)<\delta \quad \Longrightarrow \quad\left|\rho_{F}(x)-\rho_{F}(y)\right| \leq d(x, y)<\delta=\epsilon
$$

so $\rho_{F}(x)$ is uniformly continuous. Next, we want to show that $\rho_{F}(x)=0$ iff $x \in F$. If $x \in F$, then $\rho_{F}(x) \leq d(x, x)=0$, so $\rho_{F}(x)=0$. If $\rho_{F}(x)=0$, then there is some sequence $\left\{y_{n}\right\}$ in F such that $d\left(y_{n}, x\right) \rightarrow 0$, but then $y_{n} \rightarrow x$, and since F is closed, $x \in F$.

Now we get down to the actual proof. Since K and F are disjoint, $\rho_{F}(x) \neq 0$ for any $x \in K$, so ρ_{F} is a continuous, positive function on a compact set K, so by Theorem 4.16, f must attain its minimum in K, so there is some $z \in K$ such that

$$
\rho_{F}(x)>\rho_{F}(z)>0 \quad \text { for all } x \in K
$$

Letting $\delta=\rho_{F}(z) / 2>0$, we have $\rho_{F}(x)>\delta$ for all $x \in K$. This means for any $p \in K, q \in F$ we have

$$
d(p, q) \geq \rho_{F}(p)>\delta
$$

To show the conclusion may fail if neither is compact, let $K=\left\{n+\frac{1}{2^{n}}: n \in \mathbb{N}\right\}$ and $F=\mathbb{N}$. Then $d\left(n+\frac{1}{2^{n}}, n\right) \rightarrow 0$, so the conclusion fails.

