
MATH 140A - HW 7 SOLUTIONS

Problem 1 (WR Ch 4 #14). Let I = [0,1] be the closed unit interval. Suppose f is a continuous

mapping of I into I . Prove that f (x) = x for at least one x ∈ I .

Solution. Let g (x) = x − f (x), which is also continuous. If g (x) = 0 for any x ∈ I , then we have

proven the result, so assume by way of contradiction that g (x) 6= 0 for any x ∈ I . Since f (0) ∈ [0,1],

g (0) = 0− f (0) ≤ 0, and since we are assuming g (0) 6= 0, then g (0) < 0. Also, since f (1) ∈ [0,1],

g (1) = 1− f (1) ≥ 0, and since we are assuming g (1) 6= 0, then g (1) > 0. Then by the Intermediate

Value Theorem, there is some x ∈ (0,1) such that g (x) = 0, a contradiction.

Problem 2 (WR Ch 4 #15). Call a mapping of X into Y open if f (V ) is an open set in Y whenever

V is an open set in X .

Prove that every continuous open mapping of R1 into R1 is monotonic.

Solution.

Claim (1). a 6= b =⇒ f (a) 6= f (b).

Since f is a continuous function on a compact set, Theorem 4.16 says it must attain its maxi-

mum and its minimum, so let

M = sup
x∈[a,b]

f (x) and m = inf
x∈[a,b]

f (x),

and there must be some z1, z2 ∈ [a,b] such that f (z1) = m and f (z2) = M .

If M = m, then f is constant on [a,b], but then f ((a,b)) = {M } = {m} is just a point, which is

not an open set, contradicting the openness of f . Therefore, we can assume M > m. There are

four cases left:

Case 1: f (z1) = m for some z1 ∈ (a,b).

f ((a,b)) contains z1 ∈Rbut does not contain any real numbers less than z1. Then any neigh-

borhood N of z1 will contain real numbers less than z1, and N thus cannot be contained in

f ((a,b)), so it is not open, a contradiction.

Case 2: f (z2) = M for some z2 ∈ (a,b).

f ((a,b)) contains z2 ∈ R but does not contain any real numbers more than z2. Then any

neighborhood N of z2 will contain real numbers more than z2, and N thus cannot be con-

tained in f ((a,b)), so it is not open, a contradiction.

Case 3: f (a) = m and f (b) = M

Then f (a) 6= f (b).
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Case 4: f (a) = M and f (b) = m

Then f (a) 6= f (b).

Claim (2). If a < b < c and f (a) < f (b) then f (b) < f (c).

Case 1: f (c) = f (a).

Since c 6= a this case contradicts claim 1.

Case 2: f (c) = f (b).

Since c 6= b this case contradicts claim 1.

Case 3: f (c) < f (a).

Then f (c) < f (a) < f (b), and by the Intermediate Value Theorem there is some d ∈ (b,c)

such that f (d) = f (a), but a ∉ (b,c), so a 6= d , contradicting claim 1.

Case 4: f (a) < f (c) < f (b).

Then f (a) < f (c) < f (b), and by the Intermediate Value Theorem there is some d ∈ (a,b)

such that f (d) = f (c), but c ∉ (a,b), so c 6= d , contradicting claim 1.

The only case left is f (c) > f (b), and since all the other cases lead to contradictions, this is the only

possible one.

Finally, if we assume f is not monotonic, then either there are some a < b < c such that f (a) < f (b)

and f (c) < f (b) or there are some a < b < c such that f (a) > f (b) and f (c) > f (b). The first case

contradicts claim 2. The second case turns into the first case if we replace f (x) by − f (x), which is

still a continuous, open function.

Problem 3 (WR Ch 4 #17). Let f be a real function defined on (a,b). Prove that the set of points at

which f has a simple discontinuity is at most countable.

Solution. A simple discontinuity is a point x where f is discontinuous but where f (x+) and f (x−)

exist. There are three possible types of simple discontinuities we have to deal with:

Type 1: f (x+) > f (x−).

For every simple discontinuity x of this type assign three rational numbers (p, q,r ) such that

(a) f (x−) < p < f (x+),

(b) a < q < t < x =⇒ f (t ) < p,

(c) x < t < r < b =⇒ f (t ) > p,

This is always possible because: for (a), Q is dense in R so there is a rational number in the

open interval ( f (x−), f (x+)); for (b), f (x−) exists, so for ε = (p − f (x−)) there exists some

δ > 0 so that 0 < x − t < δ implies f (t )− f (x−) < ε = p − f (x−), implying that f (t ) < p, and
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there is a rational number in the interval (x −δ, x) because Q is dense in R; for (c), we use a

similar argument as for (b).

So we have shown that such a triple of rational numbers always exists. Now we need to show

that it is unique. Assume there exists another number y 6= x such that

(a) f (y−) < p < f (y+),

(b) a < q < t < y =⇒ f (t ) < p,

(c) y < t < r < b =⇒ f (t ) > p,

and assume without loss of generality that x < y . Then there exists some t ∈ R such that

x < t < y , and thus

By property (c) for x: x < t < r < b =⇒ f (t ) > p

By property (b) for y : a < q < t < y =⇒ f (t ) < p

}
a contradiction.

Therefore our system assigns a unique triple of rational numbers to every simple discon-

tinuity of this type, and since Q3 is countable, the simple discontinuities of this type are

countable.

Type 2: f (x+) < f (x−)

For every simple discontinuity x of this type assign three rational numbers (p, q,r ) such that

(a) f (x+) < p < f (x−),

(b) a < q < t < x =⇒ f (t ) > p,

(c) x < t < r < b =⇒ f (t ) < p,

This is always possible because: for (a), Q is dense in R so there is a rational number in the

open interval ( f (x+), f (x−)); for (b), f (x−) exists, so for ε = ( f (x−)− p) there exists some

δ > 0 so that 0 < x − t < δ implies f (x−)− f (t ) < ε = f (x−)−p, implying that f (t ) > p, and

there is a rational number in the interval (x −δ, x) because Q is dense in R; for (c), we use a

similar argument as for (b).

So we have shown that such a triple of rational numbers always exists. Now we need to show

that it is unique. Assume there exists another number y 6= x such that

(a) f (y+) < p < f (y−),

(b) a < q < t < y =⇒ f (t ) > p,

(c) y < t < r < b =⇒ f (t ) < p,

and assume without loss of generality that x < y . Then there exists some t ∈ R such that

x < t < y , and thus

By property (c) for x: x < t < r < b =⇒ f (t ) < p

By property (b) for y : a < q < t < y =⇒ f (t ) > p

}
a contradiction.
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Therefore our system assigns a unique triple of rational numbers to every simple discon-

tinuity of this type, and since Q3 is countable, the simple discontinuities of this type are

countable.

Type 3: f (x+) = f (x−)

Let z = f (x+) = f (x−). For every simple discontinuity x of this type assign two rational

numbers (q,r ) such that

(a) a < q < t < x =⇒ | f (t )− z| < | f (x)− z|,
(b) x < t < r < b =⇒ | f (t )− z| < | f (x)− z|,

This is always possible because: for (a), f (x−) exists, so for ε = | f (x)− z| there exists some

δ> 0 so that 0 < x − t < δ implies | f (t )− z| < ε= | f (x)− z|, and there is a rational number in

the interval (x −δ, x) becauseQ is dense in R; for (b), we use a similar argument.

So we have shown that such a triple of rational numbers always exists. Now we need to show

that it is unique. Assume there exists another number y 6= x such that

(a) a < q < t < y =⇒ | f (t )− z| < | f (y)− z|,
(b) y < t < r < b =⇒ | f (t )− z| < | f (y)− z|,

and assume without loss of generality that x < y .

By property (b) for x: x < y < r < b =⇒ | f (y)− z| < | f (x)− z|
By property (a) for y : a < q < x < y =⇒ | f (x)− z| < | f (y)− z|

}
a contradiction.

Therefore our system assigns a unique pair of rational numbers to every simple discon-

tinuity of this type, and since Q2 is countable, the simple discontinuities of this type are

countable.

Problem 4 (WR Ch 4 #21). Suppose K and F are disjoint sets in a metric space X , K is compact, F

is closed. Prove that there exists δ> 0 such that d(p, q) > δ if p ∈ K , q ∈ F .

Show the conclusion may fail for two disjoint closed sets if neither is compact.

Solution. First we show that ρF (x) is a continuous function, where ρF (x) is defined by

ρF (x) = inf
y∈F

d(x, y).

Notice that if we pick any z ∈ F , then for any x, y ∈ X ,

ρF (x) ≤ d(x, z) ≤ d(x, y)+d(y, z),

and taking an infimum of both sides with respect to all z ∈ F , we have

ρF (x) ≤ d(x, y)+ inf
z∈F

d(y, z) = d(x, y)+ρF (y) =⇒ ρF (x)−ρF (y) ≤ d(x, y).
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Repeating the same process but switching the x and y , we get ρF (y)−ρF (x) ≤ d(y, x), and putting

this together with the previous inequality, we finally have

|ρF (x)−ρF (y)| ≤ d(x, y).

So for any ε> 0, if we let δ= ε, we have

d(x, y) < δ =⇒ |ρF (x)−ρF (y)| ≤ d(x, y) < δ= ε,

so ρF (x) is uniformly continuous. Next, we want to show that ρF (x) = 0 iff x ∈ F . If x ∈ F , then

ρF (x) ≤ d(x, x) = 0, so ρF (x) = 0. If ρF (x) = 0, then there is some sequence {yn} in F such that

d(yn , x) → 0, but then yn → x, and since F is closed, x ∈ F .

Now we get down to the actual proof. Since K and F are disjoint, ρF (x) 6= 0 for any x ∈ K , so

ρF is a continuous, positive function on a compact set K , so by Theorem 4.16, f must attain its

minimum in K , so there is some z ∈ K such that

ρF (x) > ρF (z) > 0 for all x ∈ K .

Letting δ= ρF (z)/2 > 0, we have ρF (x) > δ for all x ∈ K . This means for any p ∈ K , q ∈ F we have

d(p, q) ≥ ρF (p) > δ.

To show the conclusion may fail if neither is compact, let K = {n + 1
2n : n ∈N} and F =N. Then

d(n + 1
2n ,n) → 0, so the conclusion fails.
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