MATH 140A - HW 7 SOLUTIONS

Problem 1 (WR Ch 4 #14). Let I = [0,1] be the closed unit interval. Suppose f is a continuous

mapping of I into I. Prove that f(x) = x for atleast one x € I.

Solution. Let g(x) = x — f(x), which is also continuous. If g(x) = 0 for any x € I, then we have
proven the result, so assume by way of contradiction that g(x) # 0 for any x € I. Since f(0) € [0, 1],
g(0) = 0—- f(0) <0, and since we are assuming g(0) # 0, then g(0) < 0. Also, since f(1) € [0,1],
g(1) =1-f(1) = 0, and since we are assuming g(1) # 0, then g(1) > 0. Then by the Intermediate

Value Theorem, there is some x € (0, 1) such that g(x) =0, a contradiction.

Problem 2 (WR Ch 4 #15). Call a mapping of X into Y open if f(V) is an open set in Y whenever
V is an open setin X.

Prove that every continuous open mapping of R! into R! is monotonic.
Solution.
Claim (1). a#b = f(a) # f(D).

Since f is a continuous function on a compact set, Theorem 4.16 says it must attain its maxi-
mum and its minimum, so let

M= sup f(x) and m= inf f(x),

x€ela,b] x€la,b]

and there must be some z;, z; € [a, b] such that f(z;) = m and f(zy) = M.
If M = m, then f is constant on [a, b], but then f((a, b)) = {M} = {m} is just a point, which is
not an open set, contradicting the openness of f. Therefore, we can assume M > m. There are

four cases left:

Case 1: f(z;) = mfor some z; € (a, b).
f((a, b)) contains z; € Rbut does not contain any real numbers less than z;. Then any neigh-
borhood N of z; will contain real numbers less than z;, and N thus cannot be contained in

f((a, b)), soitis not open, a contradiction.

Case 2: f(z2) = M for some z, € (a, b).
f((a, b)) contains z, € R but does not contain any real numbers more than z,. Then any
neighborhood N of z, will contain real numbers more than zp, and N thus cannot be con-

tained in f((a, b)), so it is not open, a contradiction.

Case3: f(a)=mand f(b)=M
Then f(a) # f(b).



Case4: f(a)=Mand f(b)=m
Then f(a) # f(b).

Claim (2). Ifa< b < cand f(a) < f(b) then f(b) < f(c).

Case 1: f(c) = f(a).
Since ¢ # a this case contradicts claim 1.

Case2: f(c) = f(b).

Since ¢ # b this case contradicts claim 1.

Case 3: f(c) < f(a).
Then f(c) < f(a) < f(b), and by the Intermediate Value Theorem there is some d € (b, ¢)
such that f(d) = f(a), but a ¢ (b, ¢c), so a # d, contradicting claim 1.

Case 4: f(a) < f(c) < f(b).
Then f(a) < f(c) < f(b), and by the Intermediate Value Theorem there is some d € (a, b)
such that f(d) = f(c), but c ¢ (a, b), so ¢ # d, contradicting claim 1.

The only case leftis f(c) > f(b), and since all the other cases lead to contradictions, this is the only

possible one.

Finally, if we assume f is not monotonic, then either there are some a < b < ¢ such that f(a) < f(b)
and f(c) < f(b) or there are some a < b < ¢ such that f(a) > f(b) and f(c) > f(b). The first case
contradicts claim 2. The second case turns into the first case if we replace f(x) by — f(x), which is

still a continuous, open function.

Problem 3 (WR Ch 4 #17). Let f be areal function defined on (a, b). Prove that the set of points at

which f has a simple discontinuity is at most countable.

Solution. A simple discontinuity is a point x where f is discontinuous but where f(x+) and f(x-)

exist. There are three possible types of simple discontinuities we have to deal with:

Type 1: f(x+)> f(x-).
For every simple discontinuity x of this type assign three rational numbers (p, g, r) such that
@ fx-)<p<flx+),
(b) a<g<t<x = f()<p,
(© x<t<r<b = f)>p,
This is always possible because: for (a), @ is dense in R so there is a rational number in the

open interval (f(x—), f(x+)); for (b), f(x—) exists, so for € = (p — f(x—)) there exists some

0 >0sothat 0 < x—t <6 implies f(¢) — f(x—) <e = p— f(x—), implying that f(¢) < p, and



Type 2:

there is a rational number in the interval (x — §, x) because Q is dense in R; for (c), we use a

similar argument as for (b).

So we have shown that such a triple of rational numbers always exists. Now we need to show

that it is unique. Assume there exists another number y # x such that

(@ fy-)<p<flyh),
(b) a<g<t<y = f)<p,
() y<t<r<b = f®>p,

and assume without loss of generality that x < y. Then there exists some ¢ € R such that

X < t <y, and thus

By property (c) forx: x<t<r<b = f()>p L
a contradiction.
Byproperty (b) for y:a<g<t<y = f()<p

Therefore our system assigns a unique triple of rational numbers to every simple discon-
tinuity of this type, and since @ is countable, the simple discontinuities of this type are

countable.

flx+) < f(x-)
For every simple discontinuity x of this type assign three rational numbers (p, g, r) such that
@ fxt)<p<flx-),
(b) a<g<t<x = f)>p,
() x<t<r<b = f<p,
This is always possible because: for (a), @ is dense in R so there is a rational number in the
open interval (f(x+), f(x-)); for (b), f(x—) exists, so for € = (f(x—) — p) there exists some
0 >0sothat 0 < x—t <6 implies f(x—) — f(f) <e = f(x—) — p, implying that f(#) > p, and

there is a rational number in the interval (x — §, x) because Q is dense in R; for (c), we use a

similar argument as for (b).

So we have shown that such a triple of rational numbers always exists. Now we need to show

that it is unique. Assume there exists another number y # x such that

(@ fyH<p<fly),
(b) a<g<t<y = f)>p,
(© y<t<r<b = f)<p,

and assume without loss of generality that x < y. Then there exists some ¢ € R such that
X < t <y, and thus
By property (c) forx: x<t<r<b = f()<p

a contradiction.
By property (b)for y: a<g<t<y = f)>p



Type 3:

Therefore our system assigns a unique triple of rational numbers to every simple discon-
tinuity of this type, and since @ is countable, the simple discontinuities of this type are

countable.

flx+)=f(x-)
Let z = f(x+) = f(x—). For every simple discontinuity x of this type assign two rational
numbers (g, r) such that
(@ a<g<t<x = |[f(-zl<If(x)-2zl,
(b) x<t<r<b = |f(O)-zlI<|f(x) -2zl
This is always possible because: for (a), f(x—) exists, so for € = |f(x) — z| there exists some

0 >0sothat0< x—t <6 implies |f(f) — z| <€ =]|f(x) — z|, and there is a rational number in

the interval (x — §, x) because Q is dense in R; for (b), we use a similar argument.

So we have shown that such a triple of rational numbers always exists. Now we need to show

that it is unique. Assume there exists another number y # x such that
@ a<qg<t<y = |f(t)-zl<|f(y)—zl,
(b) y<t<r<b = |[f(O)-zI<|f) -z,

and assume without loss of generality that x < y.

By property (b) forx: x<y<r<b = |f(y)—-zl<|f(x)-z|

} a contradiction.
Byproperty (a) for y:a<g<x<y = |f(x)—zl<I|f(y)-zl

Therefore our system assigns a unique pair of rational numbers to every simple discon-
tinuity of this type, and since Q? is countable, the simple discontinuities of this type are

countable.

Problem 4 (WR Ch 4 #21). Suppose K and F are disjoint sets in a metric space X, K is compact, F

is closed. Prove that there exists § > 0 such that d(p,q) >d if pe K, g€ F.

Show the conclusion may fail for two disjoint closed sets if neither is compact.

Solution. First we show that pg(x) is a continuous function, where pr(x) is defined by

pr(x) = infd(x, y).
yeF

Notice that if we pick any z € F, then for any x, y € X,

pr(x)<d(x,2) <d(x,y)+d(y,z),

and taking an infimum of both sides with respect to all z € F, we have

pr(x) Sd(x,y)+i161£d(y,2):d(x,y)+pp(y) = pr(x)—pr(y) =d(x,y).



Repeating the same process but switching the x and y, we get pr(y) — pr(x) < d(y, x), and putting

this together with the previous inequality, we finally have
lor(x) —pr(Y=d(x,y).
So for any € > 0, if we let § = ¢, we have
dx,y)<6 = lprX)-pr(PI=dx,y)<b=¢,

so pp(x) is uniformly continuous. Next, we want to show that pr(x) = 0 iff x € F. If x € F, then
pr(x) =d(x,x) =0, so pr(x) = 0. If pr(x) = 0, then there is some sequence {y,} in F such that
d(yn,x) — 0, but then y, — x, and since F is closed, x € F.

Now we get down to the actual proof. Since K and F are disjoint, pr(x) # 0 for any x € K, so
OF is a continuous, positive function on a compact set K, so by Theorem 4.16, f must attain its

minimum in K, so there is some z € K such that
pr(x)>pp(z) >0 forall xe K.
Letting 6 = pr(2)/2 > 0, we have pr(x) > 6 for all x € K. This means for any p € K, g € F we have
dp,q)=pr(p) >6.

To show the conclusion may fail if neither is compact, let K = {n+ Zin :neN}and F =N. Then

d(n+ Zi,,, n) — 0, so the conclusion fails.



