MATH 140A - HW 7 SOLUTIONS

Problem 1 (WR Ch 4 #14). Let I = [0, 1] be the closed unit interval. Suppose f is a continuous mapping of I into I. Prove that f(x) = x for at least one $x \in I$.

Solution. Let g(x) = x - f(x), which is also continuous. If g(x) = 0 for any $x \in I$, then we have proven the result, so assume by way of contradiction that $g(x) \neq 0$ for any $x \in I$. Since $f(0) \in [0, 1]$, $g(0) = 0 - f(0) \le 0$, and since we are assuming $g(0) \neq 0$, then g(0) < 0. Also, since $f(1) \in [0, 1]$, $g(1) = 1 - f(1) \ge 0$, and since we are assuming $g(1) \neq 0$, then g(1) > 0. Then by the Intermediate Value Theorem, there is some $x \in (0, 1)$ such that g(x) = 0, a contradiction.

Problem 2 (WR Ch 4 #15). Call a mapping of *X* into *Y* open if f(V) is an open set in *Y* whenever *V* is an open set in *X*.

Prove that every continuous open mapping of \mathbb{R}^1 into \mathbb{R}^1 is monotonic.

Solution.

Claim (1). $a \neq b \implies f(a) \neq f(b)$.

Since f is a continuous function on a compact set, Theorem 4.16 says it must attain its maximum and its minimum, so let

$$M = \sup_{x \in [a,b]} f(x) \quad \text{and} \quad m = \inf_{x \in [a,b]} f(x),$$

and there must be some $z_1, z_2 \in [a, b]$ such that $f(z_1) = m$ and $f(z_2) = M$.

If M = m, then f is constant on [a, b], but then $f((a, b)) = \{M\} = \{m\}$ is just a point, which is not an open set, contradicting the openness of f. Therefore, we can assume M > m. There are four cases left:

Case 1: $f(z_1) = m$ for some $z_1 \in (a, b)$.

f((a, b)) contains $z_1 \in \mathbb{R}$ but does not contain any real numbers less than z_1 . Then any neighborhood N of z_1 will contain real numbers less than z_1 , and N thus cannot be contained in f((a, b)), so it is not open, a contradiction.

Case 2: $f(z_2) = M$ for some $z_2 \in (a, b)$.

f((a, b)) contains $z_2 \in \mathbb{R}$ but does not contain any real numbers more than z_2 . Then any neighborhood *N* of z_2 will contain real numbers more than z_2 , and *N* thus cannot be contained in f((a, b)), so it is not open, a contradiction.

Case 3: f(a) = m and f(b) = MThen $f(a) \neq f(b)$. Case 4: f(a) = M and f(b) = mThen $f(a) \neq f(b)$.

Claim (2). If a < b < c and f(a) < f(b) then f(b) < f(c).

Case 1: f(c) = f(a).

Since $c \neq a$ this case contradicts claim 1.

Case 2: f(c) = f(b).

Since $c \neq b$ this case contradicts claim 1.

Case 3: f(c) < f(a).

Then f(c) < f(a) < f(b), and by the Intermediate Value Theorem there is some $d \in (b, c)$ such that f(d) = f(a), but $a \notin (b, c)$, so $a \neq d$, contradicting claim 1.

Case 4: f(a) < f(c) < f(b).

Then f(a) < f(c) < f(b), and by the Intermediate Value Theorem there is some $d \in (a, b)$ such that f(d) = f(c), but $c \notin (a, b)$, so $c \neq d$, contradicting claim 1.

The only case left is f(c) > f(b), and since all the other cases lead to contradictions, this is the only possible one.

Finally, if we assume *f* is not monotonic, then either there are some a < b < c such that f(a) < f(b) and f(c) < f(b) or there are some a < b < c such that f(a) > f(b) and f(c) > f(b). The first case contradicts claim 2. The second case turns into the first case if we replace f(x) by -f(x), which is still a continuous, open function.

Problem 3 (WR Ch 4 #17). Let f be a real function defined on (a, b). Prove that the set of points at which f has a simple discontinuity is at most countable.

Solution. A simple discontinuity is a point *x* where *f* is discontinuous but where f(x+) and f(x-) exist. There are three possible types of simple discontinuities we have to deal with:

Type 1: f(x+) > f(x-).

For every simple discontinuity x of this type assign three rational numbers (p, q, r) such that

- (a) f(x-) ,
- (b) $a < q < t < x \implies f(t) < p$,
- (c) $x < t < r < b \implies f(t) > p$,

This is always possible because: for (a), \mathbb{Q} is dense in \mathbb{R} so there is a rational number in the open interval (f(x-), f(x+)); for (b), f(x-) exists, so for $\epsilon = (p - f(x-))$ there exists some $\delta > 0$ so that $0 < x - t < \delta$ implies $f(t) - f(x-) < \epsilon = p - f(x-)$, implying that f(t) < p, and

there is a rational number in the interval $(x - \delta, x)$ because \mathbb{Q} is dense in \mathbb{R} ; for (c), we use a similar argument as for (b).

So we have shown that such a triple of rational numbers always exists. Now we need to show that it is unique. Assume there exists another number $y \neq x$ such that

- (a) f(y-) ,
- (b) $a < q < t < y \implies f(t) < p$,
- (c) $y < t < r < b \implies f(t) > p$,

and assume without loss of generality that x < y. Then there exists some $t \in \mathbb{R}$ such that x < t < y, and thus

By property (c) for
$$x: x < t < r < b \implies f(t) > p$$

By property (b) for $y: a < q < t < y \implies f(t) < p$ a contradiction.

Therefore our system assigns a unique triple of rational numbers to every simple discontinuity of this type, and since \mathbb{Q}^3 is countable, the simple discontinuities of this type are countable.

Type 2: f(x+) < f(x-)

For every simple discontinuity x of this type assign three rational numbers (p, q, r) such that

- (a) f(x+) ,
- (b) $a < q < t < x \implies f(t) > p$,
- (c) $x < t < r < b \implies f(t) < p$,

This is always possible because: for (a), \mathbb{Q} is dense in \mathbb{R} so there is a rational number in the open interval (f(x+), f(x-)); for (b), f(x-) exists, so for $\epsilon = (f(x-) - p)$ there exists some $\delta > 0$ so that $0 < x - t < \delta$ implies $f(x-) - f(t) < \epsilon = f(x-) - p$, implying that f(t) > p, and there is a rational number in the interval $(x - \delta, x)$ because \mathbb{Q} is dense in \mathbb{R} ; for (c), we use a similar argument as for (b).

So we have shown that such a triple of rational numbers always exists. Now we need to show that it is unique. Assume there exists another number $y \neq x$ such that

- (a) f(y+) ,
- **(b)** $a < q < t < y \implies f(t) > p$,
- (c) $y < t < r < b \implies f(t) < p$,

and assume without loss of generality that x < y. Then there exists some $t \in \mathbb{R}$ such that x < t < y, and thus

By property (c) for
$$x: x < t < r < b \implies f(t) < p$$

By property (b) for $y: a < q < t < y \implies f(t) > p$ a contradiction.

Therefore our system assigns a unique triple of rational numbers to every simple discontinuity of this type, and since \mathbb{Q}^3 is countable, the simple discontinuities of this type are countable.

Type 3: f(x+) = f(x-)

Let z = f(x+) = f(x-). For every simple discontinuity x of this type assign two rational numbers (q, r) such that

(a)
$$a < q < t < x \implies |f(t) - z| < |f(x) - z|,$$

(b)
$$x < t < r < b \implies |f(t) - z| < |f(x) - z|,$$

This is always possible because: for (a), f(x-) exists, so for $\epsilon = |f(x) - z|$ there exists some $\delta > 0$ so that $0 < x - t < \delta$ implies $|f(t) - z| < \epsilon = |f(x) - z|$, and there is a rational number in the interval $(x - \delta, x)$ because \mathbb{Q} is dense in \mathbb{R} ; for (b), we use a similar argument.

So we have shown that such a triple of rational numbers always exists. Now we need to show that it is unique. Assume there exists another number $y \neq x$ such that

(a)
$$a < q < t < y \implies |f(t) - z| < |f(y) - z|,$$

(b) $y < t < r < b \implies |f(t) - z| < |f(y) - z|,$

and assume without loss of generality that x < y.

By property (b) for
$$x: x < y < r < b \implies |f(y) - z| < |f(x) - z|$$

By property (a) for $y: a < q < x < y \implies |f(x) - z| < |f(y) - z|$ a contradiction.

Therefore our system assigns a unique pair of rational numbers to every simple discontinuity of this type, and since \mathbb{Q}^2 is countable, the simple discontinuities of this type are countable.

Problem 4 (WR Ch 4 #21). Suppose *K* and *F* are disjoint sets in a metric space *X*, *K* is compact, *F* is closed. Prove that there exists $\delta > 0$ such that $d(p,q) > \delta$ if $p \in K$, $q \in F$.

Show the conclusion may fail for two disjoint closed sets if neither is compact.

Solution. First we show that $\rho_F(x)$ is a continuous function, where $\rho_F(x)$ is defined by

$$\rho_F(x) = \inf_{y \in F} d(x, y).$$

Notice that if we pick any $z \in F$, then for any $x, y \in X$,

$$\rho_F(x) \le d(x, z) \le d(x, y) + d(y, z),$$

and taking an infimum of both sides with respect to all $z \in F$, we have

$$\rho_F(x) \le d(x, y) + \inf_{z \in F} d(y, z) = d(x, y) + \rho_F(y) \implies \rho_F(x) - \rho_F(y) \le d(x, y)$$

Repeating the same process but switching the *x* and *y*, we get $\rho_F(y) - \rho_F(x) \le d(y, x)$, and putting this together with the previous inequality, we finally have

$$|\rho_F(x) - \rho_F(y)| \le d(x, y).$$

So for any $\epsilon > 0$, if we let $\delta = \epsilon$, we have

$$d(x, y) < \delta \implies |\rho_F(x) - \rho_F(y)| \le d(x, y) < \delta = \epsilon,$$

so $\rho_F(x)$ is uniformly continuous. Next, we want to show that $\rho_F(x) = 0$ iff $x \in F$. If $x \in F$, then $\rho_F(x) \le d(x, x) = 0$, so $\rho_F(x) = 0$. If $\rho_F(x) = 0$, then there is some sequence $\{y_n\}$ in *F* such that $d(y_n, x) \to 0$, but then $y_n \to x$, and since *F* is closed, $x \in F$.

Now we get down to the actual proof. Since *K* and *F* are disjoint, $\rho_F(x) \neq 0$ for any $x \in K$, so ρ_F is a continuous, positive function on a compact set *K*, so by Theorem 4.16, *f* must attain its minimum in *K*, so there is some $z \in K$ such that

$$\rho_F(x) > \rho_F(z) > 0$$
 for all $x \in K$.

Letting $\delta = \rho_F(z)/2 > 0$, we have $\rho_F(x) > \delta$ for all $x \in K$. This means for any $p \in K$, $q \in F$ we have

$$d(p,q) \ge \rho_F(p) > \delta.$$

To show the conclusion may fail if neither is compact, let $K = \{n + \frac{1}{2^n} : n \in \mathbb{N}\}$ and $F = \mathbb{N}$. Then $d(n + \frac{1}{2^n}, n) \to 0$, so the conclusion fails.