
MATH 140A - HW 6 SOLUTIONS

Problem 1 (WR Ch 3 #21). Prove the following analogue of Theorem 3.10(b): If {En} is a sequence

of closed nonempty and bounded sets in a complete metric space X , if En ⊃ En+1, and if

lim
n→∞diamEn = 0,

then
⋂∞

1 En consists of exactly one point.

Solution. If
⋂

En has two or more points, say x, y ∈⋂
En with x 6= y , then x, y ∈ En for all n, so

diamEn ≥ d(x, y) > 0,

contradicting the fact that diamEn → 0. Therefore, we know it has at most one point; all that is left

is to prove it is nonempty.

For each n, pick a point xn in En (which is nonempty). Since En ⊃ En+1, we know {xn , xn+1, . . .} ⊂
En . The fact that diamEn → 0 implies that for any ε > 0 we can pick some N ∈ N such that

diamEn < ε for n ≥ N , which means for any n,m ≥ N we have

|xn −xm | ≤ diam({xN , xN+1, xN+2, . . .}) ≤ diamEN < ε,

so {xn} is a Cauchy sequence. Since X is complete, that means that {xn} converges, say xn → x.

En is closed and it contains {xn , xn+1, . . .}, (i.e. the tail of the sequence {xn}) so x ∈ En for all n.

Therefore, x ∈⋂
En , so it is nonempty, finishing the proof.

Problem 2 (WR Ch 3 #22). Suppose X is a nonempty complete metric space, and {Gn} is a se-

quence of dense open subsets of X . Prove Baire’s theorem, namely, that
⋂∞

1 Gn is not empty. (In

fact, it is dense in X .)

Solution. Let A =⋂∞
1 Gn . We will prove A is dense, which will show it is nonempty (since if A =;

and A is dense then X = A = ;, contradicting the fact that X is nonempty). To do that, we’ll first

prove the following claim:

Claim. A ⊂ X is dense iff N ∩ A 6= ; for every neighborhood N ⊂ X .

Proof of claim.

=⇒ Assuming A ⊂ X is dense, then A ∪ A′ = A = X . Then for any x ∈ N , there are two possible

cases:

(a) x ∈ A, in which case x ∈ N ∩ A, so N ∩ A 6= ;.

(b) x ∉ A and x ∈ A′. Then since x is a limit point of A, and N is a neighborhood of x, there

is some y ∈ N such that y 6= x and y ∈ A. But then y ∈ N ∩ A, so N ∩ A 6= ;.

1



⇐= Assuming N ∩ A 6= ; for every neighborhood N ⊂ X , we want to show that A = X . Let x ∈ X .

If x ∈ A we are done. Otherwise, assume x ∉ A, and we must show that x is a limit point of

A. For any neighborhood N of x, we know that N ∩ A 6= ;, so there must be some y ∈ N ∩ A.

However, since x ∉ A, that means that y 6= x. Therefore x is a limit point of A, finishing the

proof of the claim.

Now, using the claim, let N0 be any neighborhood in X , and we’ll show that N0 ∩ A 6= ;. Since

G1 is a dense open subset of X , we know that N ∩G1 6= ;, so take any x1 ∈ N0 ∩G1. Since N0 ∩G1

is open, there is a neighborhood N1 of x1, and we can shrink N1 if necessary to guarantee that

diam N1 ≤ 1. Let E1 = N1. We repeat this process, so that if xn−1, Nn−1 and En−1 are already

defined, we define the next terms in the sequence as follows: since Gn is a dense open subset of

X , we know that Nn−1 ∩Gn 6= ;, so take any xn ∈ Nn−1 ∩Gn . Since Nn−1 ∩Gn is open, there is a

neighborhood Nn of xn , and we can shrink Nn if necessary to guarantee that diam Nn ≤ 1
n . Let

En = Nn . Then {En} is a collection satisfying the conditions of the previous exercise, so
⋂

En = {p}

for some point p ∈ N0, and since En ⊂ Gn , that means there is a point p in each Gn , and thus

p ∈ A =⋂
Gn . Therefore, N0 ∩ A 6= ;.

Problem 3 (WR Ch 3 #23). Suppose {pn} and {qn} are Cauchy sequences in a metric space X . Show

that the sequence {d(pn , qn)} converges.

Solution. For any m,n,

d(pn , qn) ≤ d(pn , pm)+d(pm , qm)+d(qm , qn) =⇒ d(pn , qn)−d(pm , qm) ≤ d(pn , pm)+d(qm , qn).

Doing the same argument but switching m and n, we also have

d(pm , qm)−d(pn , qn) ≤ d(pm , pn)+d(qn , qm),

so putting these two together we have

|d(pn , qn)−d(pm , qm)| ≤ d(pn , pm)+d(qm , qn).

For any ε> 0, since {pn} is Cauchy, we can find an N1 ∈N such that for m,n ≥ N1, d(pn , pm) < ε/2,

and since {qn} is Cauchy, we can find an N2 ∈N such that for m,n ≥ N2, d(qn , qm) < ε/2. Therefore,

for n,m ≥ N = max(N1, N2) we have

|d(pn , qn)−d(pm , qm)| ≤ d(pn , pm)+d(qm , qn) < ε
2 + ε

2 = ε,

so {d(pn , qn)} is a Cauchy sequence, and since R is a complete metric space and {d(pn , qn)} is a

Cauchy sequence of real numbers, it converges.

Problem 4 (WR Ch 4 #1). Suppose f is a real function defined on R1 which satisfies

lim
h→0

[ f (x +h)− f (x −h)] = 0

for every x ∈R1. Does this imply that f is continuous?
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Solution. It does not imply that f is continuous. The following is a counterexample.

f (x) =
{

1 if x=0

0 otherwise
.

Notice that for ε= 1
2 , for any δ> 0 and any x such that 0 < |0−x| < δ (i.e. x 6= 0), we have

| f (x)− f (0)| = |0−1| = 1 > 1
2 ,

so f is discontinuous at 0.

However, for any x 6= 0, note that for any h < |x|, x +h 6= 0 and x −h 6= 0, so

f (x +h)− f (x −h) = 0−0 = 0,

and thus lim
h→0

[ f (x +h)− f (x −h)] = 0. If x = 0, then for any h > 0,

f (x +h)− f (x −h) = 0−0 = 0,

and thus lim
h→0

[ f (x +h)− f (x −h)] = 0 again. This finishes the proof of the counterexample.

Problem 5 (WR Ch 4 #7). If E ⊂ X and f is a function defined on X , the restriction of f to E is

the function g whose domain of definition is E , such that g (p) = f (p) for p ∈ E . Define f and g

on R2 by: f (0,0) = g (0,0) = 0, f (x, y) = x y2/(x2 + y4), g (x, y) = x y2/(x2 + y6) if (x, y) 6= (0,0). Prove

that f is bounded on R2, that g is unbounded in every neighborhood of (0,0), and that f is not

continuous at (0,0); nevertheless, the restrictions of both f and g to every straight line in R2 are

continuous!

Solution. f is bounded on R2 because

(|x|− y2)2 ≥ 0 ⇐⇒ x2 −2|x|y2 + y4 ≥ 0 ⇐⇒ x2 + y4 ≥ 2|x|y2 ⇐⇒ 1

2
≥

∣∣∣∣ x y2

x2 + y4

∣∣∣∣ .

g is unbounded in every neighborhood of (0,0) because if we let xn = 1
n3 and yn = 1

n then (xn , yn) →
(0,0) and

g (xn , yn) =
1

n3
1

n2

1
n6 + 1

n6

=
1

n5

2
n6

= n

2
→∞.

This is because (xn , yn) → (0,0) implies that for any neighborhood U of (0,0), there is some N ∈
N such that (xn , yn) ∈ U for n ≥ N , and g (xn , yn) gets arbitrarily large. Next, we show f is not

continuous at p = (0,0) simply by using Theorems 4.2 and Theorem 4.6 to say

f is continuous at p
4.6⇐⇒ lim

x→p
f (x) = f (p)

4.2⇐⇒ f (pn) → f (p) for every sequence pn → p.

So to show f is not continuous, we only need to find one sequence pn → p such that f (pn) 6→ f (p).

Let xn = 1
n2 and yn = 1

n , and put pn = (xn , yn), so that pn → p = (0,0). But then

f (pn) = f (xn , yn) =
1

n2
1

n2

1
n4 + 1

n4

=
1

n4

2
n4

= 1
2 6= 0 = f (0,0) = f (p),
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so f is not continuous at (0,0).

Lastly, we show that the restriction of f and g to straight lines in R2 are continuous functions.

First of all, f and g are continuous on R2 \ {(0,0)} because they are composed of addition, mul-

tiplication, and division with a denominator that is nonzero on R2 \ {(0,0)}. Therefore f and g

restricted to any line that does not go through (0,0) are already continuous. What we need to

check is that they are continuous at (0,0) for any line going through (0,0). There are two lines of

this form: y = mx and x = 0. Along the line x = 0, f and g are constantly 0, so they are continuous.

Along the line y = mx, for x 6= 0, we have

f (x,mx) = x(mx)2

x2 + (mx)4 = m2x

1+m4x2 → 0 = f (0,0) as x → 0,

and

g (x,mx) = x(mx)2

x2 + (mx)6 = m2x

1+m6x2 → 0 = g (0,0) as x → 0,

so f and g are continuous at (0,0) when restricted to straight lines.

Problem 6 (WR Ch 4 #8). Let f be a real uniformly continuous function on the bounded set E in

R1. Prove that f is bounded on E .

Show that the conclusion is false if boundedness of E is omitted from the hypothesis.

Solution. Since E is a bounded set in R, there is some R > 0 such that E ⊂ [−R,R]. Set ε= 1. Since f

is uniformly continuous, there is some δ> 0 such that |x − y | < δ implies | f (x)− f (y)| < ε= 1. Let

n ∈N be the smallest integer such that 1
n < δ, and let

[−R,−R + 1
n ], [−R + 1

n ,−R + 2
n ], . . . , [R − 2

n ,R − 1
n ], [R − 1

n ,R]

be a collection S of 2nR intervals that exactly line up and cover [−R,R]. By omitting some if nec-

essary, let I1, I2, . . . , IN be those intervals from the collection that overlap with E , i.e. such that

Ik ∩E 6= ; for 1 ≤ k ≤ N . Now for each k from 1 to N , pick some point xk ∈ Ik ∩E . Then we have

xk , x ∈ Ik ∩E =⇒ |xk −x| < 1
n < δ =⇒ | f (xk )− f (x)| < 1 =⇒ | f (x)| < 1+| f (xk )|.

Letting M = max
1≤k≤N

(1+ f (xk )), for any x ∈ E we have | f (x)| < M , so f is a bounded function on E .

The second part asks us to show the conclusion is false if boundedness of E is omitted from the

hypothesis. Let E = R, which is unbounded, and let f (x), which is uniformly continuous because

for any ε> 0, let δ= ε and we have

|x − y | < δ =⇒ | f (x)− f (y)| = |x − y | < δ= ε.

However, f (x) = x is not bounded on E =R.
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