Math 140a - HW 6 Solutions

Problem 1 (WR Ch 3 \#21). Prove the following analogue of Theorem 3.10(b): If $\left\{E_{n}\right\}$ is a sequence of closed nonempty and bounded sets in a complete metric space X, if $E_{n} \supset E_{n+1}$, and if

$$
\lim _{n \rightarrow \infty} \operatorname{diam} E_{n}=0
$$

then $\bigcap_{1}^{\infty} E_{n}$ consists of exactly one point.
Solution. If $\bigcap E_{n}$ has two or more points, say $x, y \in \bigcap E_{n}$ with $x \neq y$, then $x, y \in E_{n}$ for all n, so

$$
\operatorname{diam} E_{n} \geq d(x, y)>0
$$

contradicting the fact that $\operatorname{diam} E_{n} \rightarrow 0$. Therefore, we know it has at most one point; all that is left is to prove it is nonempty.

For each n, pick a point x_{n} in E_{n} (which is nonempty). Since $E_{n} \supset E_{n+1}$, we know $\left\{x_{n}, x_{n+1}, \ldots\right\} \subset$ E_{n}. The fact that diam $E_{n} \rightarrow 0$ implies that for any $\epsilon>0$ we can pick some $N \in \mathbb{N}$ such that $\operatorname{diam} E_{n}<\epsilon$ for $n \geq N$, which means for any $n, m \geq N$ we have

$$
\left|x_{n}-x_{m}\right| \leq \operatorname{diam}\left(\left\{x_{N}, x_{N+1}, x_{N+2}, \ldots\right\}\right) \leq \operatorname{diam} E_{N}<\epsilon,
$$

so $\left\{x_{n}\right\}$ is a Cauchy sequence. Since X is complete, that means that $\left\{x_{n}\right\}$ converges, say $x_{n} \rightarrow x$. E_{n} is closed and it contains $\left\{x_{n}, x_{n+1}, \ldots\right\}$, (i.e. the tail of the sequence $\left\{x_{n}\right\}$) so $x \in E_{n}$ for all n. Therefore, $x \in \bigcap E_{n}$, so it is nonempty, finishing the proof.

Problem 2 (WR Ch 3 \#22). Suppose X is a nonempty complete metric space, and $\left\{G_{n}\right\}$ is a sequence of dense open subsets of X. Prove Baire's theorem, namely, that $\bigcap_{1}^{\infty} G_{n}$ is not empty. (In fact, it is dense in X.)

Solution. Let $A=\bigcap_{1}^{\infty} G_{n}$. We will prove A is dense, which will show it is nonempty (since if $A=\varnothing$ and A is dense then $X=\bar{A}=\varnothing$, contradicting the fact that X is nonempty). To do that, we'll first prove the following claim:

Claim. $A \subset X$ is dense iff $N \cap A \neq \varnothing$ for every neighborhood $N \subset X$.

Proof of claim.

\Longrightarrow Assuming $A \subset X$ is dense, then $A \cup A^{\prime}=\bar{A}=X$. Then for any $x \in N$, there are two possible cases:
(a) $x \in A$, in which case $x \in N \cap A$, so $N \cap A \neq \varnothing$.
(b) $x \notin A$ and $x \in A^{\prime}$. Then since x is a limit point of A, and N is a neighborhood of x, there is some $y \in N$ such that $y \neq x$ and $y \in A$. But then $y \in N \cap A$, so $N \cap A \neq \varnothing$.
\Longleftarrow Assuming $N \cap A \neq \varnothing$ for every neighborhood $N \subset X$, we want to show that $\bar{A}=X$. Let $x \in X$. If $x \in A$ we are done. Otherwise, assume $x \notin A$, and we must show that x is a limit point of A. For any neighborhood N of x, we know that $N \cap A \neq \varnothing$, so there must be some $y \in N \cap A$. However, since $x \notin A$, that means that $y \neq x$. Therefore x is a limit point of A, finishing the proof of the claim.

Now, using the claim, let N_{0} be any neighborhood in X, and we'll show that $N_{0} \cap A \neq \varnothing$. Since G_{1} is a dense open subset of X, we know that $N \cap G_{1} \neq \varnothing$, so take any $x_{1} \in N_{0} \cap G_{1}$. Since $N_{0} \cap G_{1}$ is open, there is a neighborhood N_{1} of x_{1}, and we can shrink N_{1} if necessary to guarantee that $\operatorname{diam} \overline{N_{1}} \leq 1$. Let $E_{1}=\overline{N_{1}}$. We repeat this process, so that if x_{n-1}, N_{n-1} and E_{n-1} are already defined, we define the next terms in the sequence as follows: since G_{n} is a dense open subset of X, we know that $N_{n-1} \cap G_{n} \neq \varnothing$, so take any $x_{n} \in N_{n-1} \cap G_{n}$. Since $N_{n-1} \cap G_{n}$ is open, there is a neighborhood N_{n} of x_{n}, and we can shrink N_{n} if necessary to guarantee that diam $\overline{N_{n}} \leq \frac{1}{n}$. Let $E_{n}=\overline{N_{n}}$. Then $\left\{E_{n}\right\}$ is a collection satisfying the conditions of the previous exercise, so $\cap E_{n}=\{p\}$ for some point $p \in N_{0}$, and since $E_{n} \subset G_{n}$, that means there is a point p in each G_{n}, and thus $p \in A=\cap G_{n}$. Therefore, $N_{0} \cap A \neq \varnothing$.

Problem 3 (WR Ch 3 \#23). Suppose $\left\{p_{n}\right\}$ and $\left\{q_{n}\right\}$ are Cauchy sequences in a metric space X. Show that the sequence $\left\{d\left(p_{n}, q_{n}\right)\right\}$ converges.

Solution. For any m, n,
$d\left(p_{n}, q_{n}\right) \leq d\left(p_{n}, p_{m}\right)+d\left(p_{m}, q_{m}\right)+d\left(q_{m}, q_{n}\right) \quad \Longrightarrow \quad d\left(p_{n}, q_{n}\right)-d\left(p_{m}, q_{m}\right) \leq d\left(p_{n}, p_{m}\right)+d\left(q_{m}, q_{n}\right)$.
Doing the same argument but switching m and n, we also have

$$
d\left(p_{m}, q_{m}\right)-d\left(p_{n}, q_{n}\right) \leq d\left(p_{m}, p_{n}\right)+d\left(q_{n}, q_{m}\right)
$$

so putting these two together we have

$$
\left|d\left(p_{n}, q_{n}\right)-d\left(p_{m}, q_{m}\right)\right| \leq d\left(p_{n}, p_{m}\right)+d\left(q_{m}, q_{n}\right)
$$

For any $\epsilon>0$, since $\left\{p_{n}\right\}$ is Cauchy, we can find an $N_{1} \in \mathbb{N}$ such that for $m, n \geq N_{1}, d\left(p_{n}, p_{m}\right)<\epsilon / 2$, and since $\left\{q_{n}\right\}$ is Cauchy, we can find an $N_{2} \in \mathbb{N}$ such that for $m, n \geq N_{2}, d\left(q_{n}, q_{m}\right)<\epsilon / 2$. Therefore, for $n, m \geq N=\max \left(N_{1}, N_{2}\right)$ we have

$$
\left|d\left(p_{n}, q_{n}\right)-d\left(p_{m}, q_{m}\right)\right| \leq d\left(p_{n}, p_{m}\right)+d\left(q_{m}, q_{n}\right)<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon
$$

so $\left\{d\left(p_{n}, q_{n}\right)\right\}$ is a Cauchy sequence, and since \mathbb{R} is a complete metric space and $\left\{d\left(p_{n}, q_{n}\right)\right\}$ is a Cauchy sequence of real numbers, it converges.

Problem 4 (WR Ch 4 \#1). Suppose f is a real function defined on \mathbb{R}^{1} which satisfies

$$
\lim _{h \rightarrow 0}[f(x+h)-f(x-h)]=0
$$

for every $x \in \mathbb{R}^{1}$. Does this imply that f is continuous?

Solution. It does not imply that f is continuous. The following is a counterexample.

$$
f(x)=\left\{\begin{array}{ll}
1 & \text { if } \mathrm{x}=0 \\
0 & \text { otherwise }
\end{array} .\right.
$$

Notice that for $\epsilon=\frac{1}{2}$, for any $\delta>0$ and any x such that $0<|0-x|<\delta$ (i.e. $x \neq 0$), we have

$$
|f(x)-f(0)|=|0-1|=1>\frac{1}{2}
$$

so f is discontinuous at 0 .
However, for any $x \neq 0$, note that for any $h<|x|, x+h \neq 0$ and $x-h \neq 0$, so

$$
f(x+h)-f(x-h)=0-0=0,
$$

and thus $\lim _{h \rightarrow 0}[f(x+h)-f(x-h)]=0$. If $x=0$, then for any $h>0$,

$$
f(x+h)-f(x-h)=0-0=0,
$$

and thus $\lim _{h \rightarrow 0}[f(x+h)-f(x-h)]=0$ again. This finishes the proof of the counterexample.
Problem 5 (WR Ch 4 \#7). If $E \subset X$ and f is a function defined on X, the restriction of f to E is the function g whose domain of definition is E, such that $g(p)=f(p)$ for $p \in E$. Define f and g on \mathbb{R}^{2} by: $f(0,0)=g(0,0)=0, f(x, y)=x y^{2} /\left(x^{2}+y^{4}\right), g(x, y)=x y^{2} /\left(x^{2}+y^{6}\right)$ if $(x, y) \neq(0,0)$. Prove that f is bounded on \mathbb{R}^{2}, that g is unbounded in every neighborhood of $(0,0)$, and that f is not continuous at $(0,0)$; nevertheless, the restrictions of both f and g to every straight line in \mathbb{R}^{2} are continuous!

Solution. f is bounded on \mathbb{R}^{2} because

$$
\left(|x|-y^{2}\right)^{2} \geq 0 \quad \Longleftrightarrow \quad x^{2}-2|x| y^{2}+y^{4} \geq 0 \quad \Longleftrightarrow \quad x^{2}+y^{4} \geq 2|x| y^{2} \quad \Longleftrightarrow \quad \frac{1}{2} \geq\left|\frac{x y^{2}}{x^{2}+y^{4}}\right|
$$

g is unbounded in every neighborhood of $(0,0)$ because if we let $x_{n}=\frac{1}{n^{3}}$ and $y_{n}=\frac{1}{n}$ then $\left(x_{n}, y_{n}\right) \rightarrow$ $(0,0)$ and

$$
g\left(x_{n}, y_{n}\right)=\frac{\frac{1}{n^{3}} \frac{1}{n^{2}}}{\frac{1}{n^{6}}+\frac{1}{n^{6}}}=\frac{\frac{1}{n^{5}}}{\frac{2}{n^{6}}}=\frac{n}{2} \rightarrow \infty .
$$

This is because $\left(x_{n}, y_{n}\right) \rightarrow(0,0)$ implies that for any neighborhood U of $(0,0)$, there is some $N \in$ \mathbb{N} such that $\left(x_{n}, y_{n}\right) \in U$ for $n \geq N$, and $g\left(x_{n}, y_{n}\right)$ gets arbitrarily large. Next, we show f is not continuous at $p=(0,0)$ simply by using Theorems 4.2 and Theorem 4.6 to say
f is continuous at $p \quad \stackrel{4.6}{\Longleftrightarrow} \lim _{x \rightarrow p} f(x)=f(p) \quad \stackrel{4.2}{\Longleftrightarrow} f\left(p_{n}\right) \rightarrow f(p)$ for every sequence $p_{n} \rightarrow p$. So to show f is not continuous, we only need to find one sequence $p_{n} \rightarrow p$ such that $f\left(p_{n}\right) \nrightarrow f(p)$. Let $x_{n}=\frac{1}{n^{2}}$ and $y_{n}=\frac{1}{n}$, and put $p_{n}=\left(x_{n}, y_{n}\right)$, so that $p_{n} \rightarrow p=(0,0)$. But then

$$
f\left(p_{n}\right)=f\left(x_{n}, y_{n}\right)=\frac{\frac{1}{n^{2}} \frac{1}{n^{2}}}{\frac{1}{n^{4}}+\frac{1}{n^{4}}}=\frac{\frac{1}{n^{4}}}{\frac{2}{n^{4}}}=\frac{1}{2} \neq 0=f(0,0)=f(p),
$$

so f is not continuous at $(0,0)$.
Lastly, we show that the restriction of f and g to straight lines in \mathbb{R}^{2} are continuous functions. First of all, f and g are continuous on $\mathbb{R}^{2} \backslash\{(0,0)\}$ because they are composed of addition, multiplication, and division with a denominator that is nonzero on $\mathbb{R}^{2} \backslash\{(0,0)\}$. Therefore f and g restricted to any line that does not go through $(0,0)$ are already continuous. What we need to check is that they are continuous at $(0,0)$ for any line going through $(0,0)$. There are two lines of this form: $y=m x$ and $x=0$. Along the line $x=0, f$ and g are constantly 0 , so they are continuous. Along the line $y=m x$, for $x \neq 0$, we have

$$
f(x, m x)=\frac{x(m x)^{2}}{x^{2}+(m x)^{4}}=\frac{m^{2} x}{1+m^{4} x^{2}} \rightarrow 0=f(0,0) \quad \text { as } x \rightarrow 0
$$

and

$$
g(x, m x)=\frac{x(m x)^{2}}{x^{2}+(m x)^{6}}=\frac{m^{2} x}{1+m^{6} x^{2}} \rightarrow 0=g(0,0) \quad \text { as } x \rightarrow 0
$$

so f and g are continuous at $(0,0)$ when restricted to straight lines.

Problem 6 (WR Ch 4 \#8). Let f be a real uniformly continuous function on the bounded set E in \mathbb{R}^{1}. Prove that f is bounded on E.

Show that the conclusion is false if boundedness of E is omitted from the hypothesis.
Solution. Since E is a bounded set in \mathbb{R}, there is some $R>0$ such that $E \subset[-R, R]$. Set $\epsilon=1$. Since f is uniformly continuous, there is some $\delta>0$ such that $|x-y|<\delta$ implies $|f(x)-f(y)|<\epsilon=1$. Let $n \in \mathbb{N}$ be the smallest integer such that $\frac{1}{n}<\delta$, and let

$$
\left[-R,-R+\frac{1}{n}\right],\left[-R+\frac{1}{n},-R+\frac{2}{n}\right], \ldots,\left[R-\frac{2}{n}, R-\frac{1}{n}\right],\left[R-\frac{1}{n}, R\right]
$$

be a collection S of $2 n R$ intervals that exactly line up and cover $[-R, R]$. By omitting some if necessary, let $I_{1}, I_{2}, \ldots, I_{N}$ be those intervals from the collection that overlap with E, i.e. such that $I_{k} \cap E \neq \varnothing$ for $1 \leq k \leq N$. Now for each k from 1 to N, pick some point $x_{k} \in I_{k} \cap E$. Then we have

$$
x_{k}, x \in I_{k} \cap E \Rightarrow\left|x_{k}-x\right|<\frac{1}{n}<\delta \Rightarrow\left|f\left(x_{k}\right)-f(x)\right|<1 \Rightarrow|f(x)|<1+\left|f\left(x_{k}\right)\right|
$$

Letting $M=\max _{1 \leq k \leq N}\left(1+f\left(x_{k}\right)\right)$, for any $x \in E$ we have $|f(x)|<M$, so f is a bounded function on E.
The second part asks us to show the conclusion is false if boundedness of E is omitted from the hypothesis. Let $E=\mathbb{R}$, which is unbounded, and let $f(x)$, which is uniformly continuous because for any $\epsilon>0$, let $\delta=\epsilon$ and we have

$$
|x-y|<\delta \quad \Longrightarrow \quad|f(x)-f(y)|=|x-y|<\delta=\epsilon
$$

However, $f(x)=x$ is not bounded on $E=\mathbb{R}$.

