Math 140A - HW 5 Solutions

Problem 1 (WR Ch 3 \#8). If $\sum a_{n}$ converges, and if $\left\{b_{n}\right\}$ is monotonic and bounded, prove that $\sum a_{n} b_{n}$ converges.

Solution. Theorem 3.42 states that if
(a) the partial sums of $\sum a_{n}$ form a bounded sequence;
(b) $b_{0} \geq b_{1} \geq b_{2} \geq \cdots$;
(c) $\lim _{n \rightarrow \infty} b_{n}=0$,
then $\sum a_{n} b_{n}$ converges.

First of all, since $\sum a_{n}$ converges, that means the sequence of partial sums $\left\{\sum_{n=1}^{k} a_{n}\right\}$ is a convergent sequence, so by Theorem 3.2(c) it is bounded, and thus part (a) is satisfied.

The problem with using this theorem with $\left\{b_{n}\right\}$ is that it doesn't necessarily converge to 0 . However, we can create a new sequence $\left\{c_{n}\right\}$ based on $\left\{b_{n}\right\}$ which has the properties we need to apply the theorem. Since $\left\{b_{n}\right\}$ is monotonic and bounded, it converges by Theorem 3.14. Let $b=\lim b_{n}$. Now we have two cases:
$b_{0} \geq b$ Then b_{n} must be decreasing, so define the sequence $c_{n}=b_{n}-b$, which is monotonic decreasing as well, so it satisfies (b). Also, notice that

$$
\lim _{n \rightarrow \infty} c_{n}=\lim _{n \rightarrow \infty}\left(b_{n}-b\right)=\left(\lim _{n \rightarrow \infty} b_{n}\right)-b=b-b=0
$$

so it satisfies (c). Therefore, $\sum a_{n} c_{n}$ converges. Then we note that

$$
\sum a_{n} c_{n}=\sum a_{n} b_{n}-\sum a_{n} b \quad \Longrightarrow \quad \sum a_{n} b_{n}=\sum a_{n} c_{n}+b \sum a_{n}
$$

and the right side of the equation consists of two convergent sequences, so $\sum a_{n} b_{n}$ converges.
$b_{0} \leq b$ Then b_{n} must be increasing, so let $c_{n}=b-b_{n}$, which is monotonic decreasing, so it satisfies (b). Once again, $\lim _{n \rightarrow \infty} c_{n}=0$, so it satisfies (c), so $\sum a_{n} c_{n}$ converges. Then

$$
\sum a_{n} c_{n}=\sum a_{n} b-\sum a_{n} b_{n} \quad \Longrightarrow \quad \sum a_{n} b_{n}=b \sum a_{n}-\sum a_{n} c_{n}
$$

so $\sum a_{n} b_{n}$ converges.

Problem 2 (WR Ch 3 \#9). Find the radius of convergence of each of the following power series:
(a) $\sum n^{3} z^{n}$

Solution. By Theorem 3.39, the radius of convergence of the power series is given by $R=\frac{1}{\alpha}$ where α is defined as

$$
\alpha=\limsup _{n \rightarrow \infty} \sqrt[n]{\left|n^{3}\right|}=\lim _{n \rightarrow \infty} n^{\frac{3}{n}}=\left(\lim _{n \rightarrow \infty} n^{\frac{1}{n}}\right)^{3}=1^{3}=1
$$

so the radius of convergence is $R=\frac{1}{\alpha}=1$.
(b) $\sum \frac{2^{n}}{n!} z^{n}$

Solution. Using the ratio test, the series converges if

$$
\limsup _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty} \frac{\frac{2^{n+1}}{(n+1)!}|z|^{n+1}}{\frac{2^{n}}{n!}|z|^{n}}=\lim _{n \rightarrow \infty} \frac{2|z|}{n+1}<1
$$

which is true for all $z \in \mathbb{C}$, so the radius of convergence is $R=\infty$.
(c) $\sum \frac{2^{n}}{n^{2}} z^{n}$

Solution. Using Theorem 3.39 again,

$$
\alpha=\limsup _{n \rightarrow \infty} \sqrt[n]{\left|\frac{2^{n}}{n^{2}}\right|}=\lim _{n \rightarrow \infty} \frac{2}{n^{\frac{2}{n}}}=\frac{2}{\left(\lim _{n \rightarrow \infty} n^{\frac{1}{n}}\right)^{2}}=\frac{2}{1^{2}}=2
$$

so the radius of convergence is $R=\frac{1}{\alpha}=\frac{1}{2}$.
(d) $\sum \frac{n^{3}}{3^{n}} z^{n}$

Solution. By Theorem 3.39,

$$
\alpha=\limsup _{n \rightarrow \infty} \sqrt[n]{\left|\frac{n^{3}}{3^{n}}\right|}=\lim _{n \rightarrow \infty} \frac{n^{\frac{3}{n}}}{3}=\frac{\left(\lim _{n \rightarrow \infty} n^{\frac{1}{n}}\right)^{3}}{3}=\frac{1^{3}}{3}=\frac{1}{3}
$$

so the radius of convergence is $R=\frac{1}{\alpha}=3$.

Problem 3 (WR Ch 3 \#10). Suppose that the coefficients of the power series $\sum a_{n} z^{n}$ are integers, infinitely many of which are distinct from zero. Prove that the radius of convergence is at most 1.

Solution. To prove the radius of convergence is at most 1 , we must show that if $|z|>1$, then $\sum a_{n} z^{n}$ diverges. Notice that

$$
|z|>1 \quad \Longrightarrow \quad\left|a_{n} z^{n}\right|=\left|a_{n}\right||z|^{n}>\left|a_{n}\right| .
$$

Next, note that if an integer a is nonzero, then $|a| \geq 1$. Therefore, since there are infinitely many $n \in \mathbb{N}$ such that $a_{n} \neq 0$, there are infinitely many $n \in \mathbb{N}$ such that

$$
\left|a_{n} z^{n}\right|>\left|a_{n}\right| \geq 1
$$

so $\lim _{n \rightarrow \infty}\left|a_{n} z^{n}\right| \neq 0$, and thus $\sum a_{n} z^{n}$ diverges by the divergence theorem (3.23).

Problem 4 (WR Ch 3 \#11). Suppose $a_{n}>0, s_{n}=a_{1}+\cdots+a_{n}$, and $\sum a_{n}$ diverges.
(a) Prove that $\sum \frac{a_{n}}{1+a_{n}}$ diverges.

Solution. Assume (by way of contradiction) that $\sum \frac{a_{n}}{1+a_{n}}$ converges. Then $\frac{a_{n}}{1+a_{n}} \rightarrow 0$ by Theorem 3.23. Since $a_{n} \neq 0$, we can divide the top and bottom of this fraction by a_{n} to get $\frac{1}{\frac{1}{a_{n}}+1} \rightarrow 0$, which implies that $\frac{1}{a_{n}} \rightarrow \infty$, which again implies that $a_{n} \rightarrow 0$. This last result means that for any $\epsilon>0$, there exists some $N_{1} \in \mathbb{N}$ such that $\left|a_{n}-0\right|<\epsilon$ for all $n \geq N_{1}$. Let $\epsilon=1$, and choose $N_{1} \in \mathbb{N}$ so that $\left|a_{n}\right|<1$ for $n \geq N_{1}$.

Next, since we assumed that $\sum \frac{a_{n}}{1+a_{n}}$ converges, that means the sequence of partial sums of the series $\left\{\sum_{k=1}^{n} \frac{a_{k}}{1+a_{k}}\right\}$ converges in \mathbb{R} as we increase n to ∞, so it is a Cauchy sequence. This is equivalent to the statement that for any $\epsilon>0$ there exists some $N_{2} \in \mathbb{N}$ such that

$$
\left|\sum_{k=1}^{n} \frac{a_{k}}{1+a_{k}}-\sum_{k=1}^{m} \frac{a_{k}}{1+a_{k}}\right|<\epsilon \quad \text { for all } n, m \geq N_{2}
$$

or, equivalently,

$$
\frac{a_{m}}{1+a_{m}}+\cdots+\frac{a_{n}}{1+a_{n}}<\epsilon \quad \text { for all } n, m \geq N_{2}
$$

Now, if we set $N=\max \left(N_{1}, N_{2}\right)$, then for any $k \geq N$ we have $a_{k} \leq 1$, so

$$
\frac{a_{m}}{1+1}+\cdots+\frac{a_{n}}{1+1}<\frac{a_{m}}{1+a_{m}}+\cdots+\frac{a_{n}}{1+a_{n}}<\epsilon \quad \text { for all } n, m \geq N
$$

but this proves that $\sum \frac{a_{n}}{2}$ is Cauchy, and thus $\sum a_{n}$ converges, contradicting our assumption that it diverges.
(b) Prove that

$$
\frac{a_{N+1}}{s_{N+1}}+\cdots+\frac{a_{N+k}}{s_{N+k}} \geq 1-\frac{s_{N}}{s_{N+k}}
$$

and deduce that $\sum \frac{a_{n}}{s_{n}}$ diverges.
Solution. Since $s_{N+k} \geq s_{N+k-1} \geq s_{N+k-2} \geq \cdots \geq s_{N}$, we have

$$
\frac{a_{N+1}}{s_{N+1}}+\cdots+\frac{a_{N+k}}{s_{N+k}} \geq \frac{a_{N+1}}{s_{N+k}}+\cdots+\frac{a_{N+k}}{s_{N+k}}=\frac{a_{N+1}+\cdots+a_{N+k}}{s_{N+k}}=\frac{s_{N+k}-s_{N}}{s_{N+k}}=1-\frac{s_{N}}{s_{N+k}} .
$$

Now assume (by way of contradiction) that $\sum \frac{a_{n}}{s_{n}}$ converges. Then it's Cauchy, so for any $\epsilon>0$ there is some $N \in \mathbb{N}$ such that

$$
\frac{a_{m}}{s_{m}}+\cdots+\frac{a_{n}}{s_{n}}<\epsilon \quad \text { for all } n, m \geq N
$$

Letting $\epsilon=\frac{1}{2}, m=N$, and $n=N+k$ for some positive integer k, we get

$$
\frac{1}{2}>\frac{a_{N+1}}{s_{N+1}}+\cdots+\frac{a_{N+k}}{s_{N+k}} \geq 1-\frac{s_{N}}{s_{N+k}}
$$

and doing some arithmetic this means

$$
\frac{s_{N}}{s_{N+k}}>\frac{1}{2} \quad \text { for any positive integer } k
$$

However, since $\sum a_{n}$ diverges and $a_{n}>0$, we have that $s_{N+k} \rightarrow \infty$ as $k \rightarrow \infty$, and this implies that $\frac{s_{N}}{s_{N+k}} \rightarrow 0$ as $k \rightarrow \infty$, contradicting the fact that $\frac{s_{N}}{s_{N+k}}>\frac{1}{2}$ for all $k \in \mathbb{N}$.

Problem 5 (WR Ch 3 \#14). If $\left\{s_{n}\right\}$ is a complex sequence, define its arithmetic means σ_{n} by

$$
\sigma_{n}=\frac{s_{0}+\cdots+s_{n}}{n+1} \quad(n=0,1,2, \ldots)
$$

(a) If $\lim s_{n}=s$, prove that $\lim \sigma_{n}=s$.

Solution. We want to show that for every $\epsilon>0$ there exists an $N \in \mathbb{N}$ such that $\left|\sigma_{n}-s\right|<\epsilon$ for all $n \geq N$. Since we already know that $\lim s_{n}=s$, then there is some $N_{1} \in \mathbb{N}$ such that $\left|s_{n}-s\right|<\frac{\epsilon}{2}$ for all $n \geq N_{1}$. Also, since $\left\{s_{n}\right\}$ is a convergent sequence in a metric space (\mathbb{C}), it's bounded, so there exists some $M>0$ such that $\left|s_{n}-s\right|<M$ for all n. Putting all this together, we have

$$
\begin{aligned}
\left|\sigma_{n}-s\right| & =\left|\frac{s_{0}+\cdots+s_{n}}{n+1}-s\right| \\
& =\left|\frac{s_{0}+\cdots+s_{n}-(n+1) s}{n+1}\right| \\
& =\left|\frac{\left(s_{0}-s\right)+\cdots+\left(s_{n}-s\right)}{n+1}\right| \\
& \leq \frac{\left|s_{0}-s\right|+\cdots+\left|s_{n}-s\right|}{n+1} \\
& =\frac{\left|s_{0}-s\right|+\cdots+\left|s_{N_{1}-1}-s\right|}{n+1}+\frac{\left|s_{N_{1}}-s\right|+\cdots+\left|s_{n}-s\right|}{n+1} \\
& <\frac{N_{1} M}{n+1}+\frac{\left(n-N_{1}+1\right) \frac{\epsilon}{2}}{n+1} \\
& \leq \frac{N_{1} M}{n+1}+\frac{\epsilon}{2} .
\end{aligned}
$$

In the last step, we let choose N_{2} to be the smallest positive integer such that $N_{2}>\frac{2 N_{1} M}{\epsilon}-1$, so that

$$
\frac{N_{1} M}{n+1}<\frac{\epsilon}{2} \quad \text { for all } n \geq N_{2}
$$

Therefore, continuing from before, if we set $N=\max \left(N_{1}, N_{2}\right)$, then

$$
\left|\sigma_{n}-s\right|<\frac{N_{1} M}{n+1}+\frac{\epsilon}{2}<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon \quad \text { for all } n \geq N
$$

finishing the proof that $\lim \sigma_{n}=s$.
(b) Construct a sequence $\left\{s_{n}\right\}$ which does not converge, although $\lim \sigma_{n}=0$.

Solution. Let $s_{n}=(-1)^{n}$. Then

$$
\sigma_{n}=\frac{s_{0}+\cdots+s_{n}}{n+1}=\left\{\begin{array}{ll}
\frac{1}{n+1} & \text { if } n \text { is even } \\
0 & \text { if } n \text { is odd }
\end{array},\right.
$$

so $\lim \sigma_{n}=0$, but s_{n} does not converges.
(c) Can it happen that $s_{n}>0$ for all n and that $\limsup s_{n}=\infty$, although $\lim \sigma_{n}=0$?

Solution. Let

$$
s_{n}= \begin{cases}0 & \text { if } n=0 \\ \frac{1}{n}+\sqrt[3]{n} & \text { if } n=k^{3} \text { for some integer } k \\ \frac{1}{n} & \text { otherwise }\end{cases}
$$

Since the number of cubic numbers in $\{1, \ldots, n\}$ is given by $\lfloor\sqrt[3]{n}\rfloor$, which is the largest integer less than n, then we have

$$
\sigma_{n}=\frac{s_{0}+\cdots+s_{n}}{n+1}=\frac{1+n\left(\frac{1}{n}\right)+\lfloor\sqrt[3]{n}\rfloor(\sqrt[3]{n})}{n+1} \leq \frac{2+n^{\frac{2}{3}}}{n+1} \rightarrow 0
$$

as $n \rightarrow \infty$. Therefore $\lim \sigma_{n}=0$. Lastly, we check that

$$
\limsup s_{n} \geq \lim _{n \rightarrow \infty}\left(\frac{1}{n}+\sqrt[3]{n}\right)=\infty
$$

(d) Put $a_{n}=s_{n}-s_{n-1}$, for $n \geq 1$. Show that

$$
\begin{equation*}
s_{n}-\sigma_{n}=\frac{1}{n+1} \sum_{k=1}^{n} k a_{k} . \tag{*}
\end{equation*}
$$

Assume that $\lim \left(n a_{n}\right)=0$ and that $\left\{\sigma_{n}\right\}$ converges. Prove that $\left\{s_{n}\right\}$ converges.
Solution. We prove the first part by induction.

$$
s_{1}-\sigma_{1}=s_{1}-\frac{s_{0}+s_{1}}{=} \frac{1}{2}\left(s_{1}-s_{0}\right)=\frac{1}{2} a_{1} .
$$

This establishes the base case. Next, assume that $s_{n}-\sigma_{n}=\frac{1}{n+1} \sum_{k=1}^{n} k a_{k}$, and we have

$$
\begin{aligned}
\frac{1}{(n+1)+1} \sum_{k=1}^{n+1} k a_{k} & =\frac{1}{n+2}\left(\sum_{k=1}^{n} k a_{k}+(n+1)\left(s_{n+1}-s_{n}\right)\right) \\
& =\frac{1}{n+2}\left((n+1)\left(s_{n}-\sigma_{n}\right)+(n+1)\left(s_{n+1}-s_{n}\right)\right) \\
& =\frac{1}{n+2}(n+1)\left(s_{n+1}-\sigma_{n}\right) \\
& =\frac{(n+1) s_{n+1}-\left(s_{0}+\cdots+s_{n}\right)}{n+2} \\
& =\frac{(n+2) s_{n+1}-\left(s_{0}+\cdots+s_{n}+s_{n+1}\right)}{n+2} \\
& =s_{n+1}-\frac{\left(s_{0}+\cdots+s_{n+1}\right)}{n+2} \\
& =s_{n+1}-\sigma_{n+1}
\end{aligned}
$$

This completes the induction. Now, since $\left\{n a_{n}\right\}$ is a complex sequence, and $\lim n a_{n}=0$, then by part (a) the limit of the arithmetic means of $\left\{n a_{n}\right\}$ must also be 0 , so to restate this,

$$
\lim _{n \rightarrow \infty}\left(\frac{1}{n+1} \sum_{k=1}^{n} k a_{k}\right)=\lim _{n \rightarrow \infty} a_{n}=0
$$

Therefore,

$$
\lim \left(s_{n}-\sigma_{n}\right)=\lim _{n \rightarrow \infty}\left(\frac{1}{n+1} \sum_{k=1}^{n} k a_{k}\right)=0
$$

by $(*)$, and thus $\lim s_{n}=\lim \sigma_{n}$ (and σ_{n} converges), so finally we have shown that $\left\{s_{n}\right\}$ converges.

Problem 6 (WR Ch 3 \#16). Fix a positive number α. Choose $x_{1}>\sqrt{\alpha}$, and define $x_{2}, x_{3}, x_{4}, \ldots$ by the recursion formula

$$
x_{n+1}=\frac{1}{2}\left(x_{n}+\frac{\alpha}{x_{n}}\right)
$$

(a) Prove that $\left\{x_{n}\right\}$ decreases monotonically and that $\lim x_{n}=\sqrt{\alpha}$.

Solution. If $a, b \in \mathbb{R}$, then

$$
(a-b)^{2} \geq 0 \quad \Longrightarrow \quad a^{2}-2 a b+b^{2} \geq 0 \quad \Longrightarrow \quad \frac{a^{2}+b^{2}}{2} \geq a b
$$

with equality holding iff $a=b$. We will use this last inequality to show that $\left\{x_{n}\right\}$ is bounded below by $\sqrt{\alpha}$. We do so by induction. $x_{0}>\alpha$ is given. Assuming that $x_{n}>\alpha$, we have

$$
x_{n+1}=\frac{1}{2}\left(x_{n}+\frac{\alpha}{x_{n}}\right)>\sqrt{x_{n}} \cdot \frac{\sqrt{\alpha}}{\sqrt{x_{n}}}=\sqrt{\alpha} .
$$

Now we who that $\left\{x_{n}\right\}$ is a decreasing sequence.

$$
x_{n}-x_{n+1}=x_{n}-\frac{1}{2}\left(x_{n}+\frac{\alpha}{x_{n}}\right)=\frac{1}{2}\left(x_{n}-\frac{\alpha}{x_{n}}\right)=\frac{1}{2}\left(\frac{x_{n}^{2}-\alpha}{x_{n}}\right)>0
$$

using the fact that $x_{n}^{2}>\alpha$ in the last inequality, so we have proven that $x_{n}-x_{n+1}>0$ or equivalently that $x_{n}>x_{n+1}$. Since $\left\{x_{n}\right\}$ is a strictly decreasing, bounded sequence, it must converge. Let $x=\lim x_{n}$. Notice that $x \geq \sqrt{a}>0$, so

$$
\begin{aligned}
x_{n+1}=\frac{1}{2}\left(x_{n}+\frac{\alpha}{x_{n}}\right) \quad & \Longrightarrow \quad \lim _{n \rightarrow \infty} x_{n+1}=\lim _{n \rightarrow \infty} \frac{1}{2}\left(x_{n}+\frac{\alpha}{x_{n}}\right) \\
& \Longrightarrow \quad x=\frac{1}{2}\left(x+\frac{\alpha}{x}\right) \\
& \Longrightarrow \quad \frac{x}{2}=\frac{\alpha}{2 x} \\
& \Longrightarrow \quad x^{2}=\alpha \\
& \Longrightarrow \quad x=\sqrt{\alpha} .
\end{aligned}
$$

(b) Put $\epsilon_{n}=x_{n}-\sqrt{\alpha}$, and show that

$$
\epsilon_{n+1}=\frac{\epsilon_{n}^{2}}{2 x_{n}}<\frac{\epsilon_{n}^{2}}{2 \sqrt{\alpha}}
$$

so that, setting $\beta=2 \sqrt{\alpha}$,

$$
\epsilon_{n+1}<\beta\left(\frac{\epsilon_{1}}{\beta}\right)^{2^{n}} \quad(n=1,2,3, \ldots)
$$

Solution.

$$
\epsilon_{n+1}=x_{n+1}-\sqrt{\alpha}=\frac{1}{2}\left(x_{n}-\frac{\alpha}{x_{n}}\right)-\sqrt{\alpha}=\frac{x_{n}^{2}-2 x_{n} \sqrt{\alpha}+\alpha}{2 x_{n}}=\frac{\left(x_{n}-\sqrt{\alpha}\right)^{2}}{2 x_{n}}=\frac{\epsilon_{n}^{2}}{2 x_{n}}<\frac{\epsilon_{n}^{2}}{2 \sqrt{\alpha}}
$$

since $x_{n}>\sqrt{\alpha}$. So $\epsilon_{n+1}<\frac{\epsilon_{n}^{2}}{\beta}$, and applying this n times we get

$$
\epsilon_{n+1}<\frac{\epsilon_{n}^{2}}{\beta}<\frac{\left(\frac{\epsilon_{n-1}^{2}}{\beta}\right)^{2}}{\beta}=\beta\left(\frac{\epsilon_{n-1}}{\beta}\right)^{2^{2}}<\cdots<\beta\left(\frac{\epsilon_{1}}{\beta}\right)^{2^{n}}
$$

(c) This is a good algorithm for computing square roots, since the recursion formula is simple and the convergence is extremely rapid. For example, if $\alpha=3$ and $x_{1}=2$, show that $\epsilon_{1} / \beta<\frac{1}{10}$ and that therefore

$$
\epsilon_{5}=4 \cdot 10^{-16}, \quad \epsilon_{6}<4 \cdot 10^{-32} .
$$

Solution.

$$
\begin{aligned}
& \frac{\epsilon_{1}}{\beta}=\frac{2-\sqrt{3}}{2 \sqrt{3}}=\frac{1}{2 \sqrt{3}(2+\sqrt{3})}=\frac{1}{6+4 \sqrt{3}}<\frac{1}{10} \\
& \epsilon_{5}<\beta\left(\frac{\epsilon_{1}}{\beta}\right)^{2^{4}}<2 \sqrt{3} \cdot 10^{-16}<4 \cdot 10^{-16} \\
& \epsilon_{6}<\beta\left(\frac{\epsilon_{1}}{\beta}\right)^{2^{5}}<2 \sqrt{3} \cdot 10^{-32}<4 \cdot 10^{-32}
\end{aligned}
$$

Problem 7 (WR Ch 3 \#18). Replace the recursion formula of Exercise 16 by

$$
x_{n+1}=\frac{p-1}{p} x_{n}+\frac{\alpha}{p} x_{n}^{-p+1}
$$

where p is a fixed positive integer, and describe the behavior of the resulting sequences $\left\{x_{n}\right\}$.
Solution. If the limit exists, let $x=\lim x_{n}$. Then

$$
\begin{aligned}
x_{n+1}=\frac{p-1}{p} x_{n}+\frac{\alpha}{p} x_{n}^{-p+1} & \Longrightarrow \lim _{n \rightarrow \infty} x_{n+1}=\lim _{n \rightarrow \infty} \frac{p-1}{p} x_{n}+\frac{\alpha}{p} x_{n}^{-p+1} \\
& \Longrightarrow x=\frac{p-1}{p} x+\frac{\alpha}{p} x^{-p+1} \\
& \Longrightarrow \frac{x}{p}=\frac{\alpha}{p x} \\
& \Longrightarrow x^{p}=\alpha \\
& \Longrightarrow x=\sqrt[p]{\alpha} .
\end{aligned}
$$

To show the limit exists, we'll show again the sequence is bounded and decreasing. First we show it's bounded. To do so, we'll have to use Young's Inequality. It says that if $\frac{1}{p}+\frac{1}{q}=1$ and if $a, b>0$,
then $\frac{a}{q}+\frac{b}{p} \geq a^{\frac{1}{q}} b^{\frac{1}{p}}$. Thus, letting $q=\frac{p}{p-1}$, we have $\frac{1}{p}+\frac{1}{q}=1$, and so

$$
x_{n+1}=\frac{p-1}{p} x_{n}+\frac{\alpha}{p} x_{n}^{-p+1}>x_{n}^{\frac{1}{q}} \frac{\alpha^{\frac{1}{p}}}{x_{n}^{\frac{p-1}{p}}}=\sqrt[p]{\alpha}
$$

so $\left\{x_{n}\right\}$ is bounded. Next,

$$
x_{n}-x_{n+1}=x_{n}-\frac{p-1}{p} x_{n}+\frac{\alpha}{p} x_{n}^{-p+1}=\frac{x_{n}}{p}+\frac{\alpha}{p x_{n}^{p-1}}=\frac{x_{n}^{p}-\alpha}{p x_{n}^{p-1}}>0
$$

so $\left\{x_{n}\right\}$ is decreasing.

