
MATH 140A - HW 5 SOLUTIONS

Problem 1 (WR Ch 3 #8). If
∑

an converges, and if {bn} is monotonic and bounded, prove that∑
anbn converges.

Solution. Theorem 3.42 states that if

(a) the partial sums of
∑

an form a bounded sequence;

(b) b0 ≥ b1 ≥ b2 ≥ ·· · ;

(c) lim
n→∞bn = 0,

then
∑

anbn converges.

First of all, since
∑

an converges, that means the sequence of partial sums {
∑k

n=1 an} is a con-

vergent sequence, so by Theorem 3.2(c) it is bounded, and thus part (a) is satisfied.

The problem with using this theorem with {bn} is that it doesn’t necessarily converge to 0.

However, we can create a new sequence {cn} based on {bn} which has the properties we need to

apply the theorem. Since {bn} is monotonic and bounded, it converges by Theorem 3.14. Let

b = limbn . Now we have two cases:

b0 ≥ b Then bn must be decreasing, so define the sequence cn = bn −b, which is monotonic de-

creasing as well, so it satisfies (b). Also, notice that

lim
n→∞cn = lim

n→∞(bn −b) = ( lim
n→∞bn)−b = b −b = 0,

so it satisfies (c). Therefore,
∑

ancn converges. Then we note that

∑
ancn =∑

anbn −∑
anb =⇒ ∑

anbn =∑
ancn +b

∑
an ,

and the right side of the equation consists of two convergent sequences, so
∑

anbn con-

verges.

b0 ≤ b Then bn must be increasing, so let cn = b−bn , which is monotonic decreasing, so it satisfies

(b). Once again, lim
n→∞cn = 0, so it satisfies (c), so

∑
ancn converges. Then

∑
ancn =∑

anb −∑
anbn =⇒ ∑

anbn = b
∑

an −∑
ancn ,

so
∑

anbn converges.

Problem 2 (WR Ch 3 #9). Find the radius of convergence of each of the following power series:
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(a)
∑

n3zn

Solution. By Theorem 3.39, the radius of convergence of the power series is given by R = 1
α

where α is defined as

α= limsup
n→∞

n
√
|n3| = lim

n→∞n
3
n =

(
lim

n→∞n
1
n

)3 = 13 = 1,

so the radius of convergence is R = 1
α = 1.

(b)
∑ 2n

n! zn

Solution. Using the ratio test, the series converges if

limsup
n→∞

∣∣∣∣ an+1

an

∣∣∣∣= lim
n→∞

2n+1

(n+1)! |z|n+1

2n

n! |z|n
= lim

n→∞
2 |z|
n +1

< 1,

which is true for all z ∈C, so the radius of convergence is R =∞.

(c)
∑ 2n

n2 zn

Solution. Using Theorem 3.39 again,

α= limsup
n→∞

n

√∣∣∣∣ 2n

n2

∣∣∣∣= lim
n→∞

2

n
2
n

= 2(
lim

n→∞n
1
n

)2 = 2

12 = 2,

so the radius of convergence is R = 1
α = 1

2 .

(d)
∑ n3

3n zn

Solution. By Theorem 3.39,

α= limsup
n→∞

n

√∣∣∣∣n3

3n

∣∣∣∣= lim
n→∞

n
3
n

3
=

(
lim

n→∞n
1
n

)3

3
= 13

3
= 1

3
,

so the radius of convergence is R = 1
α = 3.

Problem 3 (WR Ch 3 #10). Suppose that the coefficients of the power series
∑

an zn are integers,

infinitely many of which are distinct from zero. Prove that the radius of convergence is at most 1.

Solution. To prove the radius of convergence is at most 1, we must show that if |z| > 1, then
∑

an zn

diverges. Notice that

|z| > 1 =⇒ |an zn | = |an | |z|n > |an |.
Next, note that if an integer a is nonzero, then |a| ≥ 1. Therefore, since there are infinitely many

n ∈N such that an 6= 0, there are infinitely many n ∈N such that

|an zn | > |an | ≥ 1,

so lim
n→∞ |an zn | 6= 0, and thus

∑
an zn diverges by the divergence theorem (3.23).
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Problem 4 (WR Ch 3 #11). Suppose an > 0, sn = a1 +·· ·+an , and
∑

an diverges.

(a) Prove that
∑ an

1+an
diverges.

Solution. Assume (by way of contradiction) that
∑ an

1+an
converges. Then an

1+an
→ 0 by The-

orem 3.23. Since an 6= 0, we can divide the top and bottom of this fraction by an to get
1

1
an

+1
→ 0, which implies that 1

an
→ ∞, which again implies that an → 0. This last result

means that for any ε > 0, there exists some N1 ∈ N such that |an −0| < ε for all n ≥ N1. Let

ε= 1, and choose N1 ∈N so that |an | < 1 for n ≥ N1.

Next, since we assumed that
∑ an

1+an
converges, that means the sequence of partial sums

of the series {
∑n

k=1
ak

1+ak
} converges in R as we increase n to ∞, so it is a Cauchy sequence.

This is equivalent to the statement that for any ε> 0 there exists some N2 ∈N such that∣∣∣∣∣ n∑
k=1

ak

1+ak
−

m∑
k=1

ak

1+ak

∣∣∣∣∣< ε for all n,m ≥ N2,

or, equivalently,
am

1+am
+·· ·+ an

1+an
< ε for all n,m ≥ N2.

Now, if we set N = max(N1, N2), then for any k ≥ N we have ak ≤ 1, so

am

1+1
+·· ·+ an

1+1
< am

1+am
+·· ·+ an

1+an
< ε for all n,m ≥ N ,

but this proves that
∑ an

2 is Cauchy, and thus
∑

an converges, contradicting our assumption

that it diverges.

(b) Prove that
aN+1

sN+1
+·· ·+ aN+k

sN+k
≥ 1− sN

sN+k

and deduce that
∑ an

sn
diverges.

Solution. Since sN+k ≥ sN+k−1 ≥ sN+k−2 ≥ ·· · ≥ sN , we have

aN+1

sN+1
+·· ·+ aN+k

sN+k
≥ aN+1

sN+k
+·· ·+ aN+k

sN+k
= aN+1 +·· ·+aN+k

sN+k
= sN+k − sN

sN+k
= 1− sN

sN+k
.

Now assume (by way of contradiction) that
∑ an

sn
converges. Then it’s Cauchy, so for any ε> 0

there is some N ∈N such that

am

sm
+·· ·+ an

sn
< ε for all n,m ≥ N .

Letting ε= 1
2 , m = N , and n = N +k for some positive integer k, we get

1

2
> aN+1

sN+1
+·· ·+ aN+k

sN+k
≥ 1− sN

sN+k
,

and doing some arithmetic this means

sN

sN+k
> 1

2
for any positive integer k.
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However, since
∑

an diverges and an > 0, we have that sN+k →∞ as k →∞, and this implies

that sN
sN+k

→ 0 as k →∞, contradicting the fact that sN
sN+k

> 1
2 for all k ∈N.

Problem 5 (WR Ch 3 #14). If {sn} is a complex sequence, define its arithmetic means σn by

σn = s0 +·· ·+ sn

n +1
(n = 0,1,2, . . .).

(a) If lim sn = s, prove that limσn = s.

Solution. We want to show that for every ε > 0 there exists an N ∈ N such that |σn − s| < ε

for all n ≥ N . Since we already know that lim sn = s, then there is some N1 ∈ N such that

|sn − s| < ε
2 for all n ≥ N1. Also, since {sn} is a convergent sequence in a metric space (C), it’s

bounded, so there exists some M > 0 such that |sn −s| < M for all n. Putting all this together,

we have

|σn − s| =
∣∣∣ s0 +·· ·+ sn

n +1
− s

∣∣∣
=

∣∣∣∣ s0 +·· ·+ sn − (n +1)s

n +1

∣∣∣∣
=

∣∣∣∣ (s0 − s)+·· ·+ (sn − s)

n +1

∣∣∣∣
≤ |s0 − s|+ · · ·+ |sn − s|

n +1

= |s0 − s|+ · · ·+ |sN1−1 − s|
n +1

+ |sN1 − s|+ · · ·+ |sn − s|
n +1

< N1M

n +1
+ (n −N1 +1) ε

2

n +1

≤ N1M

n +1
+ ε

2 .

In the last step, we let choose N2 to be the smallest positive integer such that N2 > 2N1M
ε −1,

so that
N1M

n +1
< ε

2 for all n ≥ N2.

Therefore, continuing from before, if we set N = max(N1, N2), then

|σn − s| < N1M

n +1
+ ε

2 < ε
2 + ε

2 = ε for all n ≥ N ,

finishing the proof that limσn = s.

(b) Construct a sequence {sn} which does not converge, although limσn = 0.

Solution. Let sn = (−1)n . Then

σn = s0 +·· ·+ sn

n +1
=

{
1

n+1 if n is even

0 if n is odd
,

so limσn = 0, but sn does not converges.
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(c) Can it happen that sn > 0 for all n and that limsup sn =∞, although limσn = 0?

Solution. Let

sn =


0 if n = 0
1
n + 3

p
n if n = k3 for some integer k

1
n otherwise

Since the number of cubic numbers in {1, . . . ,n} is given by b 3
p

nc, which is the largest integer

less than n, then we have

σn = s0 +·· ·+ sn

n +1
= 1+n

( 1
n

)+b 3
p

nc( 3
p

n
)

n +1
≤ 2+n

2
3

n +1
→ 0

as n →∞. Therefore limσn = 0. Lastly, we check that

limsup sn ≥ lim
n→∞

(
1

n
+ 3
p

n

)
=∞.

(d) Put an = sn − sn−1, for n ≥ 1. Show that

sn −σn = 1

n +1

n∑
k=1

kak . (∗)

Assume that lim(nan) = 0 and that {σn} converges. Prove that {sn} converges.

Solution. We prove the first part by induction.

s1 −σ1 = s1 − s0 + s1

=
1
2 (s1 − s0) = 1

2 a1.

This establishes the base case. Next, assume that sn −σn = 1
n+1

∑n
k=1 kak , and we have

1

(n +1)+1

n+1∑
k=1

kak = 1

n +2

(
n∑

k=1
kak + (n +1)(sn+1 − sn)

)

= 1

n +2
((n +1)(sn −σn)+ (n +1)(sn+1 − sn))

= 1

n +2
(n +1)(sn+1 −σn)

= (n +1)sn+1 − (s0 +·· ·+ sn)

n +2

= (n +2)sn+1 − (s0 +·· ·+ sn + sn+1)

n +2

= sn+1 − (s0 +·· ·+ sn+1)

n +2

= sn+1 −σn+1.

This completes the induction. Now, since {nan} is a complex sequence, and limnan = 0,

then by part (a) the limit of the arithmetic means of {nan} must also be 0, so to restate this,

lim
n→∞

(
1

n +1

n∑
k=1

kak

)
= lim

n→∞an = 0.
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Therefore,

lim(sn −σn) = lim
n→∞

(
1

n +1

n∑
k=1

kak

)
= 0,

by (∗), and thus lim sn = limσn (and σn converges), so finally we have shown that {sn} con-

verges.

Problem 6 (WR Ch 3 #16). Fix a positive number α. Choose x1 >p
α, and define x2, x3, x4, . . . by

the recursion formula

xn+1 = 1

2

(
xn + α

xn

)
.

(a) Prove that {xn} decreases monotonically and that lim xn =p
α.

Solution. If a,b ∈R, then

(a −b)2 ≥ 0 =⇒ a2 −2ab +b2 ≥ 0 =⇒ a2 +b2

2
≥ ab,

with equality holding iff a = b. We will use this last inequality to show that {xn} is bounded

below by
p
α. We do so by induction. x0 >α is given. Assuming that xn >α, we have

xn+1 = 1

2

(
xn + α

xn

)
>p

xn ·
p
αp
xn

=p
α.

Now we who that {xn} is a decreasing sequence.

xn −xn+1 = xn − 1

2

(
xn + α

xn

)
= 1

2

(
xn − α

xn

)
= 1

2

(
x2

n −α

xn

)
> 0,

using the fact that x2
n > α in the last inequality, so we have proven that xn − xn+1 > 0 or

equivalently that xn > xn+1. Since {xn} is a strictly decreasing, bounded sequence, it must

converge. Let x = lim xn . Notice that x ≥p
a > 0, so

xn+1 = 1

2

(
xn + α

xn

)
=⇒ lim

n→∞xn+1 = lim
n→∞

1

2

(
xn + α

xn

)
=⇒ x = 1

2

(
x + α

x

)
=⇒ x

2
= α

2x

=⇒ x2 =α

=⇒ x =p
α.

(b) Put εn = xn −p
α, and show that

εn+1 =
ε2

n

2xn
< ε2

n

2
p
α

so that, setting β= 2
p
α,

εn+1 <β

(
ε1

β

)2n

(n = 1,2,3, . . .).
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Solution.

εn+1 = xn+1 −
p
α= 1

2 (xn − α
xn

)−p
α= x2

n −2xn
p
α+α

2xn
= (xn −p

α)2

2xn
= ε2

n

2xn
< ε2

n

2
p
α

since xn >p
α. So εn+1 < ε2

n
β , and applying this n times we get

εn+1 <
ε2

n

β
<

(
ε2

n−1
β

)2

β
=β

(
εn−1

β

)22

< ·· · <β

(
ε1

β

)2n

.

(c) This is a good algorithm for computing square roots, since the recursion formula is simple

and the convergence is extremely rapid. For example, ifα= 3 and x1 = 2, show that ε1/β< 1
10

and that therefore

ε5 = 4 ·10−16, ε6 < 4 ·10−32.

Solution.

ε1

β
= 2−p

3

2
p

3
= 1

2
p

3(2+p
3)

= 1

6+4
p

3
< 1

10
.

ε5 <β

(
ε1

β

)24

< 2
p

3 ·10−16 < 4 ·10−16.

ε6 <β

(
ε1

β

)25

< 2
p

3 ·10−32 < 4 ·10−32.

Problem 7 (WR Ch 3 #18). Replace the recursion formula of Exercise 16 by

xn+1 = p −1

p
xn + α

p
x−p+1

n

where p is a fixed positive integer, and describe the behavior of the resulting sequences {xn}.

Solution. If the limit exists, let x = lim xn . Then

xn+1 = p −1

p
xn + α

p
x−p+1

n =⇒ lim
n→∞xn+1 = lim

n→∞
p −1

p
xn + α

p
x−p+1

n

=⇒ x = p −1

p
x + α

p
x−p+1

=⇒ x

p
= α

px

=⇒ xp =α

=⇒ x = p
p
α.

To show the limit exists, we’ll show again the sequence is bounded and decreasing. First we show

it’s bounded. To do so, we’ll have to use Young’s Inequality. It says that if 1
p + 1

q = 1 and if a,b > 0,
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then a
q + b

p ≥ a
1
q b

1
p . Thus, letting q = p

p−1 , we have 1
p + 1

q = 1, and so

xn+1 = p −1

p
xn + α

p
x−p+1

n > x
1
q

n
α

1
p

x
p−1

p
n

= p
p
α,

so {xn} is bounded. Next,

xn −xn+1 = xn − p −1

p
xn + α

p
x−p+1

n = xn

p
+ α

pxp−1
n

= xp
n −α

pxp−1
n

> 0,

so {xn} is decreasing.
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