
MATH 140A - HW 4 SOLUTIONS

Problem 1 (WR Ch 3 #1). Prove that convergence of {sn} implies convergence of {|sn}. Is the con-

verse true? (Assume we are working in Rk )

Solution. Let a,b ∈Rk . Then by the triangle inequality,

|a| = |a −b +b| ≤ |a −b|+ |b| =⇒ |a|− |b| ≤ |a −b|
|b| = |b −a +a| ≤ |b −a|+ |a| =⇒ |b|− |a| ≤ |b −a| = |a −b|.

Putting these two inequalities together, we get that

| |a|− |b| | ≤ |a −b|. (∗)

Now we are given that {sn} converges, say to some s ∈ Rk . This means that for every ε> 0, there is

some N ∈N such that |sn − s| < ε for all n ≥ N .

We now claim that {|sn |} converges to |s|, so we need to show that for every ε> 0 there is some

N ∈N such that | |sn |−|s| | < ε for all n ≥ N . Given any ε> 0, we use (∗) and the convergence of {sn}

to get some N ∈N such that

| |sn |− |s| | ≤ |sn − s| < ε for all n ≥ N ,

so {|sn |} converges.

The converse is not true because of the following counterexample. Let k = 1, so we are working

in R. Let sn = (−1)n . Then the sequence {|sn |} is just 1,1,1, . . ., which clearly converges to 1, but the

sequence {sn} is −1,1,−1,1, . . ., which does not converge. It does not converge because, letting

ε = 1, for any N ∈N we know there is an odd number n ≥ N and an even number m ≥ N , so that

d(sn , sm) = |1− (−1)| = 2 > ε, so that the sequence is not Cauchy. If a sequence is not Cauchy, it

does not converge.

Problem 2 (WR Ch 3 #3). If s1 =
p

2, and

sn+1 =
√

2+p
sn (n = 1,2,3, . . .),

prove that {sn} converges, and that sn < 2 for n = 1,2,3, . . ..

Solution.

Claim: sn < 2 for all n ∈ N. We prove this by induction. The base case is n = 1, and we see that

s1 = p
2 < 2. The next step is to assume for our induction hypothesis that sn < 2 for some n ∈ N

and prove that sn+1 < 2. This follows from the fact that

sn+1 =
√

2+p
sn <

√
2+p

2 <p
2+2 = 2.
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Claim: sn ≤ sn+1 for all n ∈N. We prove this by induction as well. The base case is n = 1, and we

see that s1 = p
2 ≤

√
2+

√p
2 = s2 since

√p
2 ≥ 0. The next step is to assume for our induction

hypothesis that sn−1 ≤ sn for some n ∈N and prove that sn−1 ≤ sn . This follows from the fact that

sn =
√

2+p
sn−1 ≤

√
2+p

sn = sn+1.

Therefore, we have proved that the sequence {sn} is monotonic increasing and bounded, so it

converges by theorem 3.14.

Problem 3 (WR Ch 3 #4). Find the upper and lower limits of the sequence {sn} defined by

s1 = 0; s2m = s2m−1

2
; s2m+1 = 1

2
+ ssm .

Solution.

Claim: s2m = 2m−1
2m+1 . We prove this by induction. The base case is m = 0, and we see that s0 = 0 =

20−1
21 . The next step is to assume for our induction hypothesis that s2m = 2m−1

2m+1 and try to prove this

formula when substituting in m +1 for m. This follows from the fact that

s2(m+1) =
s2(m+1)−1

2
= s2m+1

2
=

1
2 + s2m

2
=

1
2 + 2m−1

2m+1

2
=

2m

2m+1 + 2m−1
2m+1

2
=

2m+1−1
2m+1

2
= 2m+1 −1

2(m+1)+1
.

Claim: s2m+1 = 2m+1−1
2m+1 . We prove this by induction. The base case is m = 0, and we see that

s1 = 1
2 = 21−1

21 . The next step is to assume for our induction hypothesis that s2m+1 = 2m+1−1
2m+1 and try

to prove this formula when substituting in m +1 for m. This follows from the fact that

s2(m+1)+1 = 1

2
+ s2(m+1) = 1

2
+ s2m+1

2
= 1

2
+

2m+1−1
2m+1

2
=

2m+1

2m+1 + 2m+1−1
2m+1

2
=

2m+2−1
2m+1

2
= 2(m+1)+1 −1

2(m+1)+1
.

Now, using these two results we have that

lim
m→∞ s2m = lim

m→∞
2m −1

2m+1 = 1

2
lim

m→∞
2m −1

2m = 1

2
,

and

lim
m→∞ s2m+1 = lim

m→∞
2m+1 −1

2m+1 = 1.

Therefore, the upper limit of {sn} is 1 and the lower one is 1
2 .

Problem 4 (WR Ch 3 #6). Investigate the behavior (convergence or divergence) of
∑

an if

(a) an =p
n +1−p

n;

(b) an =
p

n+1−pn
n ;

(c) an = ( n
p

n −1)n ;

(d) an = 1
1+zn , for complex values of z.
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Solution.

(a) an =p
n +1−p

n;

Notice that

an =p
n +1−pn = (

p
n +1−pn)

(p
n +1+p

np
n +1+p

n

)
= 1p

n +1+p
n
≥ 1p

n +1+p
n +1

= 1

2
p

n +1
,

and ∞∑
n=0

1

2
p

n +1
= 1

2

∞∑
n=0

1p
n +1

= 1

2

∞∑
n=1

1

n
1
2

diverges by theorem 3.28, so by the comparison test, since an ≥ 1
2
p

n+1
≥ 0, we know that∑

an diverges.

(b) an =
p

n+1−pn
n ;

From the previous part, we have that

an = 1

n(
p

n +1+p
n)

≤ 1

n(
p

n +p
n)

= 1

2n
3
2

,

and ∞∑
n=0

1

2n
3
2

= 1

2

∞∑
n=0

1

n
3
2

converges by theorem 3.28, so by the comparison test, since |an | = an ≤ 1

2n
3
2

, we know that∑
an converges.

(c) an = ( n
p

n −1)n ;

Notice that

lim
n→∞

n
p

an = lim
n→∞

n
p

n −1 = 0 < 1,

(since limn→∞ n
p

n = 1 by theorem 3.20(b)) so by the root test,
∑

an converges.

(d) an = 1
1+zn , for complex values of z.

Case 1: |z| ≤ 1.

|1+ zn | ≤ |1|+ |zn | = 1+|z|n ≤ 1+1 = 2.

Therefore, |1+ zn | ≤ 2. Taking reciprocals of both sides of the inequality, we have

1

|1+ zn | ≥
1

2
,

so
∑ 1

|1+zn | diverges by the divergence test (theorem 3.23) because lim
n→∞an 6= 0.

Case 2: |z| > 1.

|zn | = |1+ zn −1| ≤ |1+ zn |+ |−1| = |1+ zn |+1 =⇒ |1+ zn | ≥ |z|n −1.

Now choose N0 ∈N such that if n ≥ N0 then |z|n > 2, which we can do because |z| > 1.

This also means that |z|n
2 > 1. Thus for n ≥ N0, we have

|1+ z|n ≥ |z|n −1 = |z|n
2

+
( |z|n

2
−1

)
> |z|n

2
.
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Taking reciprocals, we have∣∣∣∣ 1

1+ zn

∣∣∣∣≤ 2

|z|n for all n ≥ N0.

Since ∞∑
n=N0

2

|z|n = 2
∞∑

n=N0

(
1

|z|
)n

is a geometric series with 1
|z| < 1, it converges, and since |an | ≤ 2

|z|n for n ≥ N0, then∑
an converges by the comparison test (theorem 3.24(a)).

Problem 5 (WR Ch 3 #7). Prove that the convergence of
∑

an implies the convergence of

∑ p
an

n
,

if an ≥ 0.

Solution. By the Cauchy-Schwarz inequality,∣∣∣∣∣ k∑
n=1

(
p

an) ( 1
n )

∣∣∣∣∣
2

≤
(

k∑
n=1

|pan |2
) (

k∑
n=1

| 1
n |2

)
=

(
k∑

n=1
an

) (
k∑

n=1

1
n2

)
.

Now by theorem 3.28,
∑ 1

n2 converges, say to some positive real number B , and if
∑

an converges,

say to some positive real number A, then if we set sk =∑k
n=1

p
an
n and we have

|sk | =
∣∣∣∣∣ k∑
n=1

p
an

n

∣∣∣∣∣≤
√√√√(

k∑
n=1

an

) (
k∑

n=1

1
n2

)
≤
p

AB ,

so sk is bounded, and sk is monotonically increasing because
p

an
n ≥ 0. Therefore, by theorem 3.14,

sk converges, which means that
∑ p

an
n converges.
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