MATH 140A - HW 4 SOLUTIONS

Problem 1 (WR Ch 3 #1). Prove that convergence of $\{s_n\}$ implies convergence of $\{|s_n\}$. Is the converse true? (Assume we are working in \mathbb{R}^k)

Solution. Let $a, b \in \mathbb{R}^k$. Then by the triangle inequality,

$$|a| = |a - b + b| \le |a - b| + |b| \implies |a| - |b| \le |a - b|$$
$$|b| = |b - a + a| \le |b - a| + |a| \implies |b| - |a| \le |b - a| = |a - b|.$$

Putting these two inequalities together, we get that

$$||a| - |b|| \le |a - b|. \tag{(*)}$$

Now we are given that $\{s_n\}$ converges, say to some $s \in \mathbb{R}^k$. This means that for every $\epsilon > 0$, there is some $N \in \mathbb{N}$ such that $|s_n - s| < \epsilon$ for all $n \ge N$.

We now claim that $\{|s_n|\}$ converges to |s|, so we need to show that for every $\epsilon > 0$ there is some $N \in \mathbb{N}$ such that $||s_n| - |s|| < \epsilon$ for all $n \ge N$. Given any $\epsilon > 0$, we use (*) and the convergence of $\{s_n\}$ to get some $N \in \mathbb{N}$ such that

$$||s_n| - |s|| \le |s_n - s| < \epsilon$$
 for all $n \ge N$,

so $\{|s_n|\}$ converges.

The converse is not true because of the following counterexample. Let k = 1, so we are working in \mathbb{R} . Let $s_n = (-1)^n$. Then the sequence $\{|s_n|\}$ is just 1, 1, 1, ..., which clearly converges to 1, but the sequence $\{s_n\}$ is -1, 1, -1, 1, ..., which does not converge. It does not converge because, letting $\epsilon = 1$, for any $N \in \mathbb{N}$ we know there is an odd number $n \ge N$ and an even number $m \ge N$, so that $d(s_n, s_m) = |1 - (-1)| = 2 > \epsilon$, so that the sequence is not Cauchy. If a sequence is not Cauchy, it does not converge.

Problem 2 (WR Ch 3 #3). If $s_1 = \sqrt{2}$, and

$$s_{n+1} = \sqrt{2 + \sqrt{s_n}}$$
 $(n = 1, 2, 3, ...)$

prove that $\{s_n\}$ converges, and that $s_n < 2$ for n = 1, 2, 3, ...

Solution.

Claim: $s_n < 2$ for all $n \in \mathbb{N}$. We prove this by induction. The base case is n = 1, and we see that $s_1 = \sqrt{2} < 2$. The next step is to assume for our induction hypothesis that $s_n < 2$ for some $n \in \mathbb{N}$ and prove that $s_{n+1} < 2$. This follows from the fact that

$$s_{n+1} = \sqrt{2 + \sqrt{s_n}} < \sqrt{2 + \sqrt{2}} < \sqrt{2 + 2} = 2.$$

Claim: $s_n \le s_{n+1}$ for all $n \in \mathbb{N}$. We prove this by induction as well. The base case is n = 1, and we see that $s_1 = \sqrt{2} \le \sqrt{2 + \sqrt{\sqrt{2}}} = s_2$ since $\sqrt{\sqrt{2}} \ge 0$. The next step is to assume for our induction hypothesis that $s_{n-1} \le s_n$ for some $n \in \mathbb{N}$ and prove that $s_{n-1} \le s_n$. This follows from the fact that

$$s_n = \sqrt{2 + \sqrt{s_{n-1}}} \le \sqrt{2 + \sqrt{s_n}} = s_{n+1}.$$

Therefore, we have proved that the sequence $\{s_n\}$ is monotonic increasing and bounded, so it converges by theorem 3.14.

Problem 3 (WR Ch 3 #4). Find the upper and lower limits of the sequence $\{s_n\}$ defined by

$$s_1 = 0;$$
 $s_{2m} = \frac{s_{2m-1}}{2};$ $s_{2m+1} = \frac{1}{2} + s_{sm}.$

Solution.

Claim: $s_{2m} = \frac{2^m - 1}{2^{m+1}}$. We prove this by induction. The base case is m = 0, and we see that $s_0 = 0 = \frac{2^0 - 1}{2^1}$. The next step is to assume for our induction hypothesis that $s_{2m} = \frac{2^m - 1}{2^{m+1}}$ and try to prove this formula when substituting in m + 1 for m. This follows from the fact that

$$s_{2(m+1)} = \frac{s_{2(m+1)-1}}{2} = \frac{s_{2m+1}}{2} = \frac{\frac{1}{2} + s_{2m}}{2} = \frac{\frac{1}{2} + \frac{2^m - 1}{2^{m+1}}}{2} = \frac{\frac{2^m}{2^{m+1}} + \frac{2^m - 1}{2^{m+1}}}{2} = \frac{\frac{2^{m+1} - 1}{2^{m+1}}}{2} = \frac{2^{m+1} - 1}{2^{(m+1)+1}}.$$

Claim: $s_{2m+1} = \frac{2^{m+1}-1}{2^{m+1}}$. We prove this by induction. The base case is m = 0, and we see that $s_1 = \frac{1}{2} = \frac{2^1-1}{2^1}$. The next step is to assume for our induction hypothesis that $s_{2m+1} = \frac{2^{m+1}-1}{2^{m+1}}$ and try to prove this formula when substituting in m + 1 for m. This follows from the fact that

$$s_{2(m+1)+1} = \frac{1}{2} + s_{2(m+1)} = \frac{1}{2} + \frac{s_{2m+1}}{2} = \frac{1}{2} + \frac{\frac{2^{m+1}-1}{2^{m+1}}}{2} = \frac{\frac{2^{m+1}}{2^{m+1}} + \frac{2^{m+1}-1}{2^{m+1}}}{2} = \frac{\frac{2^{m+2}-1}{2^{m+1}}}{2} = \frac{2^{(m+1)+1}-1}{2^{(m+1)+1}}.$$

Now, using these two results we have that

$$\lim_{m \to \infty} s_{2m} = \lim_{m \to \infty} \frac{2^m - 1}{2^{m+1}} = \frac{1}{2} \lim_{m \to \infty} \frac{2^m - 1}{2^m} = \frac{1}{2},$$

and

$$\lim_{m \to \infty} s_{2m+1} = \lim_{m \to \infty} \frac{2^{m+1} - 1}{2^{m+1}} = 1.$$

Therefore, the upper limit of $\{s_n\}$ is 1 and the lower one is $\frac{1}{2}$.

Problem 4 (WR Ch 3 #6). Investigate the behavior (convergence or divergence) of $\sum a_n$ if

- (a) $a_n = \sqrt{n+1} \sqrt{n};$
- **(b)** $a_n = \frac{\sqrt{n+1} \sqrt{n}}{n};$
- (c) $a_n = (\sqrt[n]{n} 1)^n;$
- (d) $a_n = \frac{1}{1+z^n}$, for complex values of z.

Solution.

(a) $a_n = \sqrt{n+1} - \sqrt{n};$

Notice that

$$a_n = \sqrt{n+1} - \sqrt{n} = (\sqrt{n+1} - \sqrt{n}) \left(\frac{\sqrt{n+1} + \sqrt{n}}{\sqrt{n+1} + \sqrt{n}} \right) = \frac{1}{\sqrt{n+1} + \sqrt{n}} \ge \frac{1}{\sqrt{n+1} + \sqrt{n+1}} = \frac{1}{2\sqrt{n+1}},$$

and

$$\sum_{n=0}^{\infty} \frac{1}{2\sqrt{n+1}} = \frac{1}{2} \sum_{n=0}^{\infty} \frac{1}{\sqrt{n+1}} = \frac{1}{2} \sum_{n=1}^{\infty} \frac{1}{n^{\frac{1}{2}}}$$

diverges by theorem 3.28, so by the comparison test, since $a_n \ge \frac{1}{2\sqrt{n+1}} \ge 0$, we know that $\sum a_n$ diverges.

(b) $a_n = \frac{\sqrt{n+1} - \sqrt{n}}{n};$

From the previous part, we have that

$$a_n = \frac{1}{n(\sqrt{n+1} + \sqrt{n})} \le \frac{1}{n(\sqrt{n} + \sqrt{n})} = \frac{1}{2n^{\frac{3}{2}}},$$

and

$$\sum_{n=0}^{\infty} \frac{1}{2n^{\frac{3}{2}}} = \frac{1}{2} \sum_{n=0}^{\infty} \frac{1}{n^{\frac{3}{2}}}$$

converges by theorem 3.28, so by the comparison test, since $|a_n| = a_n \le \frac{1}{2n^2}$, we know that $\sum a_n$ converges.

(c) $a_n = (\sqrt[n]{n} - 1)^n$;

Notice that

$$\lim_{n\to\infty}\sqrt[n]{a_n} = \lim_{n\to\infty}\sqrt[n]{n-1} = 0 < 1,$$

(since $\lim_{n\to\infty} \sqrt[n]{n} = 1$ by theorem 3.20(b)) so by the root test, $\sum a_n$ converges.

(d) $a_n = \frac{1}{1+z^n}$, for complex values of z.

Case 1: $|z| \le 1$.

$$|1 + z^n| \le |1| + |z^n| = 1 + |z|^n \le 1 + 1 = 2.$$

Therefore, $|1 + z^n| \le 2$. Taking reciprocals of both sides of the inequality, we have

$$\frac{1}{|1+z^n|} \ge \frac{1}{2},$$

so $\sum \frac{1}{|1+z^n|}$ diverges by the divergence test (theorem 3.23) because $\lim_{n\to\infty} a_n \neq 0$. Case 2: |z| > 1.

$$|z^{n}| = |1 + z^{n} - 1| \le |1 + z^{n}| + |-1| = |1 + z^{n}| + 1 \qquad \Longrightarrow \qquad |1 + z^{n}| \ge |z|^{n} - 1.$$

Now choose $N_0 \in \mathbb{N}$ such that if $n \ge N_0$ then $|z|^n > 2$, which we can do because |z| > 1. This also means that $\frac{|z|^n}{2} > 1$. Thus for $n \ge N_0$, we have

$$|1+z|^n \ge |z|^n - 1 = \frac{|z|^n}{2} + \left(\frac{|z|^n}{2} - 1\right) > \frac{|z|^n}{2}$$

Taking reciprocals, we have

$$\left|\frac{1}{1+z^n}\right| \le \frac{2}{|z|^n} \qquad \text{for all } n \ge N_0.$$

Since

$$\sum_{n=N_0}^{\infty} \frac{2}{|z|^n} = 2 \sum_{n=N_0}^{\infty} \left(\frac{1}{|z|}\right)^n$$

is a geometric series with $\frac{1}{|z|} < 1$, it converges, and since $|a_n| \le \frac{2}{|z|^n}$ for $n \ge N_0$, then $\sum a_n$ converges by the comparison test (theorem 3.24(a)).

Problem 5 (WR Ch 3 #7). Prove that the convergence of $\sum a_n$ implies the convergence of

$$\sum \frac{\sqrt{a_n}}{n}$$
,

if $a_n \ge 0$.

Solution. By the Cauchy-Schwarz inequality,

$$\left|\sum_{n=1}^{k} (\sqrt{a_n}) \left(\frac{1}{n}\right)\right|^2 \le \left(\sum_{n=1}^{k} |\sqrt{a_n}|^2\right) \left(\sum_{n=1}^{k} |\frac{1}{n}|^2\right) = \left(\sum_{n=1}^{k} a_n\right) \left(\sum_{n=1}^{k} \frac{1}{n^2}\right).$$

Now by theorem 3.28, $\sum \frac{1}{n^2}$ converges, say to some positive real number *B*, and if $\sum a_n$ converges, say to some positive real number *A*, then if we set $s_k = \sum_{n=1}^k \frac{\sqrt{a_n}}{n}$ and we have

$$|s_k| = \left|\sum_{n=1}^k \frac{\sqrt{a_n}}{n}\right| \le \sqrt{\left(\sum_{n=1}^k a_n\right)\left(\sum_{n=1}^k \frac{1}{n^2}\right)} \le \sqrt{AB},$$

so s_k is bounded, and s_k is monotonically increasing because $\frac{\sqrt{a_n}}{n} \ge 0$. Therefore, by theorem 3.14, s_k converges, which means that $\sum \frac{\sqrt{a_n}}{n}$ converges.