Math 140a - HW 4 Solutions

Problem 1 (WR Ch 3 \#1). Prove that convergence of $\left\{s_{n}\right\}$ implies convergence of $\left\{\mid s_{n}\right\}$. Is the converse true? (Assume we are working in \mathbb{R}^{k})

Solution. Let $a, b \in \mathbb{R}^{k}$. Then by the triangle inequality,

$$
\begin{array}{lll}
|a|=|a-b+b| \leq|a-b|+|b| & \Longrightarrow & |a|-|b| \leq|a-b| \\
|b|=|b-a+a| \leq|b-a|+|a| & \Longrightarrow & |b|-|a| \leq|b-a|=|a-b| .
\end{array}
$$

Putting these two inequalities together, we get that

$$
\begin{equation*}
||a|-|b|| \leq|a-b| . \tag{*}
\end{equation*}
$$

Now we are given that $\left\{s_{n}\right\}$ converges, say to some $s \in \mathbb{R}^{k}$. This means that for every $\epsilon>0$, there is some $N \in \mathbb{N}$ such that $\left|s_{n}-s\right|<\epsilon$ for all $n \geq N$.

We now claim that $\left\{\left|s_{n}\right|\right\}$ converges to $|s|$, so we need to show that for every $\epsilon>0$ there is some $N \in \mathbb{N}$ such that $\left|\left|s_{n}\right|-|s|\right|<\epsilon$ for all $n \geq N$. Given any $\epsilon>0$, we use $(*)$ and the convergence of $\left\{s_{n}\right\}$ to get some $N \in \mathbb{N}$ such that

$$
\left|\left|s_{n}\right|-|s|\right| \leq\left|s_{n}-s\right|<\epsilon \quad \text { for all } n \geq N,
$$

so $\left\{\left|s_{n}\right|\right\}$ converges.
The converse is not true because of the following counterexample. Let $k=1$, so we are working in \mathbb{R}. Let $s_{n}=(-1)^{n}$. Then the sequence $\left\{\left|s_{n}\right|\right\}$ is just $1,1,1, \ldots$, which clearly converges to 1 , but the sequence $\left\{s_{n}\right\}$ is $-1,1,-1,1, \ldots$, which does not converge. It does not converge because, letting $\epsilon=1$, for any $N \in \mathbb{N}$ we know there is an odd number $n \geq N$ and an even number $m \geq N$, so that $d\left(s_{n}, s_{m}\right)=|1-(-1)|=2>\epsilon$, so that the sequence is not Cauchy. If a sequence is not Cauchy, it does not converge.

Problem 2 (WR Ch 3 \#3). If $s_{1}=\sqrt{2}$, and

$$
s_{n+1}=\sqrt{2+\sqrt{s_{n}}} \quad(n=1,2,3, \ldots)
$$

prove that $\left\{s_{n}\right\}$ converges, and that $s_{n}<2$ for $n=1,2,3, \ldots$.

Solution.

Claim: $s_{n}<2$ for all $n \in \mathbb{N}$. We prove this by induction. The base case is $n=1$, and we see that $s_{1}=\sqrt{2}<2$. The next step is to assume for our induction hypothesis that $s_{n}<2$ for some $n \in \mathbb{N}$ and prove that $s_{n+1}<2$. This follows from the fact that

$$
s_{n+1}=\sqrt{2+\sqrt{s_{n}}}<\sqrt{2+\sqrt{2}}<\sqrt{2+2}=2
$$

Claim: $s_{n} \leq s_{n+1}$ for all $n \in \mathbb{N}$. We prove this by induction as well. The base case is $n=1$, and we see that $s_{1}=\sqrt{2} \leq \sqrt{2+\sqrt{\sqrt{2}}}=s_{2}$ since $\sqrt{\sqrt{2}} \geq 0$. The next step is to assume for our induction hypothesis that $s_{n-1} \leq s_{n}$ for some $n \in \mathbb{N}$ and prove that $s_{n-1} \leq s_{n}$. This follows from the fact that

$$
s_{n}=\sqrt{2+\sqrt{s_{n-1}}} \leq \sqrt{2+\sqrt{s_{n}}}=s_{n+1} .
$$

Therefore, we have proved that the sequence $\left\{s_{n}\right\}$ is monotonic increasing and bounded, so it converges by theorem 3.14.

Problem 3 (WR Ch 3 \#4). Find the upper and lower limits of the sequence $\left\{s_{n}\right\}$ defined by

$$
s_{1}=0 ; \quad s_{2 m}=\frac{s_{2 m-1}}{2} ; \quad s_{2 m+1}=\frac{1}{2}+s_{s m} .
$$

Solution.

Claim: $s_{2 m}=\frac{2^{m}-1}{2^{m+1}}$. We prove this by induction. The base case is $m=0$, and we see that $s_{0}=0=$ $\frac{2^{0}-1}{2^{1}}$. The next step is to assume for our induction hypothesis that $s_{2 m}=\frac{2^{m}-1}{2^{m+1}}$ and try to prove this formula when substituting in $m+1$ for m. This follows from the fact that

$$
s_{2(m+1)}=\frac{s_{2(m+1)-1}}{2}=\frac{s_{2 m+1}}{2}=\frac{\frac{1}{2}+s_{2 m}}{2}=\frac{\frac{1}{2}+\frac{2^{m}-1}{2^{m+1}}}{2}=\frac{\frac{2^{m}}{2^{m+1}}+\frac{2^{m}-1}{2^{m+1}}}{2}=\frac{\frac{2^{m+1}-1}{2^{m+1}}}{2}=\frac{2^{m+1}-1}{2^{(m+1)+1}} .
$$

Claim: $s_{2 m+1}=\frac{2^{m+1}-1}{2^{m+1}}$. We prove this by induction. The base case is $m=0$, and we see that $s_{1}=\frac{1}{2}=\frac{2^{1}-1}{2^{1}}$. The next step is to assume for our induction hypothesis that $s_{2 m+1}=\frac{2^{m+1}-1}{2^{m+1}}$ and try to prove this formula when substituting in $m+1$ for m. This follows from the fact that

$$
s_{2(m+1)+1}=\frac{1}{2}+s_{2(m+1)}=\frac{1}{2}+\frac{s_{2 m+1}}{2}=\frac{1}{2}+\frac{\frac{2^{m+1}-1}{2^{m+1}}}{2}=\frac{\frac{2^{m+1}}{2^{m+1}}+\frac{2^{m+1}-1}{2^{m+1}}}{2}=\frac{\frac{2^{m+2}-1}{2^{m+1}}}{2}=\frac{2^{(m+1)+1}-1}{2^{(m+1)+1}} .
$$

Now, using these two results we have that

$$
\lim _{m \rightarrow \infty} s_{2 m}=\lim _{m \rightarrow \infty} \frac{2^{m}-1}{2^{m+1}}=\frac{1}{2} \lim _{m \rightarrow \infty} \frac{2^{m}-1}{2^{m}}=\frac{1}{2},
$$

and

$$
\lim _{m \rightarrow \infty} s_{2 m+1}=\lim _{m \rightarrow \infty} \frac{2^{m+1}-1}{2^{m+1}}=1
$$

Therefore, the upper limit of $\left\{s_{n}\right\}$ is 1 and the lower one is $\frac{1}{2}$.

Problem 4 (WR Ch 3 \#6). Investigate the behavior (convergence or divergence) of $\sum a_{n}$ if
(a) $a_{n}=\sqrt{n+1}-\sqrt{n}$;
(b) $a_{n}=\frac{\sqrt{n+1}-\sqrt{n}}{n}$;
(c) $a_{n}=(\sqrt[n]{n}-1)^{n}$;
(d) $a_{n}=\frac{1}{1+z^{n}}, \quad$ for complex values of z.

Solution.

(a) $a_{n}=\sqrt{n+1}-\sqrt{n}$;

Notice that
$a_{n}=\sqrt{n+1}-\sqrt{n}=(\sqrt{n+1}-\sqrt{n})\left(\frac{\sqrt{n+1}+\sqrt{n}}{\sqrt{n+1}+\sqrt{n}}\right)=\frac{1}{\sqrt{n+1}+\sqrt{n}} \geq \frac{1}{\sqrt{n+1}+\sqrt{n+1}}=\frac{1}{2 \sqrt{n+1}}$,
and

$$
\sum_{n=0}^{\infty} \frac{1}{2 \sqrt{n+1}}=\frac{1}{2} \sum_{n=0}^{\infty} \frac{1}{\sqrt{n+1}}=\frac{1}{2} \sum_{n=1}^{\infty} \frac{1}{n^{\frac{1}{2}}}
$$

diverges by theorem 3.28 , so by the comparison test, since $a_{n} \geq \frac{1}{2 \sqrt{n+1}} \geq 0$, we know that $\sum a_{n}$ diverges.
(b) $a_{n}=\frac{\sqrt{n+1}-\sqrt{n}}{n}$;

From the previous part, we have that

$$
a_{n}=\frac{1}{n(\sqrt{n+1}+\sqrt{n})} \leq \frac{1}{n(\sqrt{n}+\sqrt{n})}=\frac{1}{2 n^{\frac{3}{2}}},
$$

and

$$
\sum_{n=0}^{\infty} \frac{1}{2 n^{\frac{3}{2}}}=\frac{1}{2} \sum_{n=0}^{\infty} \frac{1}{n^{\frac{3}{2}}}
$$

converges by theorem 3.28 , so by the comparison test, since $\left|a_{n}\right|=a_{n} \leq \frac{1}{2 n^{\frac{3}{2}}}$, we know that $\sum a_{n}$ converges.
(c) $a_{n}=(\sqrt[n]{n}-1)^{n}$;

Notice that

$$
\lim _{n \rightarrow \infty} \sqrt[n]{a_{n}}=\lim _{n \rightarrow \infty} \sqrt[n]{n}-1=0<1
$$

(since $\lim _{n \rightarrow \infty} \sqrt[n]{n}=1$ by theorem $3.20(\mathrm{~b})$) so by the root test, $\sum a_{n}$ converges.
(d) $a_{n}=\frac{1}{1+z^{n}}, \quad$ for complex values of z.

Case 1: $|z| \leq 1$.

$$
\left|1+z^{n}\right| \leq|1|+\left|z^{n}\right|=1+|z|^{n} \leq 1+1=2
$$

Therefore, $\left|1+z^{n}\right| \leq 2$. Taking reciprocals of both sides of the inequality, we have

$$
\frac{1}{\left|1+z^{n}\right|} \geq \frac{1}{2}
$$

so $\sum \frac{1}{\left|1+z^{n}\right|}$ diverges by the divergence test (theorem 3.23) because $\lim _{n \rightarrow \infty} a_{n} \neq 0$.
Case 2: $|z|>1$.

$$
\left|z^{n}\right|=\left|1+z^{n}-1\right| \leq\left|1+z^{n}\right|+|-1|=\left|1+z^{n}\right|+1 \quad \Longrightarrow \quad\left|1+z^{n}\right| \geq|z|^{n}-1
$$

Now choose $N_{0} \in \mathbb{N}$ such that if $n \geq N_{0}$ then $|z|^{n}>2$, which we can do because $|z|>1$. This also means that $\frac{|z|^{n}}{2}>1$. Thus for $n \geq N_{0}$, we have

$$
|1+z|^{n} \geq|z|^{n}-1=\frac{|z|^{n}}{2}+\left(\frac{|z|^{n}}{2}-1\right)>\frac{|z|^{n}}{2}
$$

Taking reciprocals, we have

$$
\left|\frac{1}{1+z^{n}}\right| \leq \frac{2}{|z|^{n}} \quad \text { for all } n \geq N_{0}
$$

Since

$$
\sum_{n=N_{0}}^{\infty} \frac{2}{|z|^{n}}=2 \sum_{n=N_{0}}^{\infty}\left(\frac{1}{|z|}\right)^{n}
$$

is a geometric series with $\frac{1}{|z|}<1$, it converges, and since $\left|a_{n}\right| \leq \frac{2}{|z|^{n}}$ for $n \geq N_{0}$, then $\sum a_{n}$ converges by the comparison test (theorem 3.24(a)).

Problem 5 (WR Ch 3 \#7). Prove that the convergence of $\sum a_{n}$ implies the convergence of

$$
\sum \frac{\sqrt{a_{n}}}{n}
$$

if $a_{n} \geq 0$.
Solution. By the Cauchy-Schwarz inequality,

$$
\left|\sum_{n=1}^{k}\left(\sqrt{a_{n}}\right)\left(\frac{1}{n}\right)\right|^{2} \leq\left(\sum_{n=1}^{k}\left|\sqrt{a_{n}}\right|^{2}\right)\left(\sum_{n=1}^{k}\left|\frac{1}{n}\right|^{2}\right)=\left(\sum_{n=1}^{k} a_{n}\right)\left(\sum_{n=1}^{k} \frac{1}{n^{2}}\right) .
$$

Now by theorem 3.28, $\sum \frac{1}{n^{2}}$ converges, say to some positive real number B, and if $\sum a_{n}$ converges, say to some positive real number A, then if we set $s_{k}=\sum_{n=1}^{k} \frac{\sqrt{a_{n}}}{n}$ and we have

$$
\left|s_{k}\right|=\left|\sum_{n=1}^{k} \frac{\sqrt{a_{n}}}{n}\right| \leq \sqrt{\left(\sum_{n=1}^{k} a_{n}\right)\left(\sum_{n=1}^{k} \frac{1}{n^{2}}\right)} \leq \sqrt{A B}
$$

so s_{k} is bounded, and s_{k} is monotonically increasing because $\frac{\sqrt{a_{n}}}{n} \geq 0$. Therefore, by theorem 3.14, s_{k} converges, which means that $\sum \frac{\sqrt{a_{n}}}{n}$ converges.

