
MATH 140A - HW 3 SOLUTIONS

Problem 1 (WR Ch 2 #12). Let K ⊂ R1 consist of 0 and the numbers 1/n, for n = 1,2,3, . . .. Prove

that K is compact directly from the definition (without using the Heine-Borel theorem).

Solution. Let {Gα} be any open cover of K , which means each Gα is an open set and together their

union
⋃
αGα contains K . In order to prove K is compact, we must show there is a finite subcover.

Since 0 ∈ K ⊂ ⋃
αGα, there is some α0 such that 0 ∈ Gα0 . Now we know Gα0 is an open set, and

an open set must contain a neighborhood of each of its points. Since 0 ∈Gα0 , there is some r > 0

such that Nr (0) ⊂Gα0 . Let N be the smallest integer that is greater than 1/r , which means N > 1
r ,

or equivalently, r > 1
N . Now notice that

r > 1

N
> 1

N +1
> 1

N +2
> ·· · ,

or more formally,

r > d(0, 1
N ) > d(0, 1

N+1 ) > d(0, 1
N+2 ) > ·· · ,

which means that the points 1
N , 1

N+1 , 1
N+2 , . . . are all in Nr (0), which is contained in Gα0 . So we

have one of the open sets that contains all but a finite number of points of K . The only points

left to cover are 1, 1
2 , 1

3 , . . . , 1
N−1 . Since 1 is in K ⊂ ⋃

αGα, there must be some α1 such that 1 ∈Gα1 .

Repeating this for the rest of the points left, we have sets Gα2 ,Gα3 , . . . ,GαN−1 containing the points
1
2 , 1

3 , . . . , 1
N−1 respectively. Therefore,

K ⊂
N−1⋃
n=0

Gαn ,

and we have found a finite subcover. Hence, K is compact.

Problem 2 (WR Ch 2 #13). Construct a compact set of real numbers whose limit points form a

countable set.

Solution. Let

E =
{

1

2m

(
1− 1

n

) ∣∣∣∣m,n ∈N
}

.

This is plotted below,

A more illustrative plot follows, with the x-axis representing points of E and the y-axis represent-

ing different values of m to visually separate out different groups of points.
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Consider the points of the form p = 1
2m with m ∈N. Any neighborhood of one of these points

of radius r > 0 will also contain the point q = 1
2m (1− 1

n ) where we choose the positive integer n

such that 1
n < 2mr , so that |p −q| = | 1

2m − 1
2m (1− 1

n )| = | 1
2m n | < r . Since q 6= p and q ∈ E , that means

p is a limit point, and thus E has at least a countably infinite number of limit points.

The fact that E is compact comes from its being closed (since it contains its limit points) and

bounded (since each point of E is contained in [0, 1
2 ]).

Problem 3 (WR Ch 2 #22). A metric space is called separable if it contains a countable dense

subset. Show that Rk is separable.

Solution. We claim that Qk is dense in Rk . To show this, let p = (p1, . . . , pk ) ∈ Rk . In order to show

Qk is dense, we need to show that p ∈Qk or that p is a limit point of Qk . So if p ∈Qk , we’re done.

If p ∉Qk , we want to show that p is a limit point. Let Nr (p) with r > 0 be a neighborhood of p. Let

δ = r /
p

n, and since Q is dense in R, we can find some qi 6= pi in Nδ(pi ) for i = 1, . . . ,k. Then for

q = (q1, . . . , qk ) we have

d(p, q) =
√

(p1 −q1)2 +·· ·+ (pk −qk )2 <
√

r 2

n
+·· ·+ r 2

n
= r,

so that q ∈ Nr (p), and thus p is a limit point.

ThusQk is dense in Rk , and it is countable by Theorem 2.13, so Rk is separable.

Problem 4 (WR Ch 2 #24). Let X be a metric space in which every infinite subset has a limit point.

Prove that X is separable.

Solution. Fix δ > 0 and pick x1 ∈ X . Having chosen x1, . . . , x j ∈ X , choose x j+1 ∈ X , if possible, so

that d(xi , x j+1) ≥ δ for i = 1, . . . , j . This is essentially covering X by disjoint del t a-balls centered

at the points x1, x2, . . .. If we can do this forever without having any overlap, then the set {x j | j ∈N}

is an infinite set without a limit point (since we have neighborhoods around each point that don’t
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contain any other point in the set). But his is a contradiction, so this process must stop after a

finite number of steps, which means X can be covered by finitely many neighborhoods of radius

δ. Since we have proved this for any δ > 0, we can assign δ to be anything greater than zero and

still have the same result.

Let δ = 1. Then there are finitely many points x(1)
1 , x(1)

2 , . . . , x(1)
N1

such that X is covered by δ-

neighborhoods centered at those points. Now let δ = 1
2 . Then there are finitely many points

x(2)
1 , x(2)

2 , . . . , x(2)
N2

such that X is covered by δ-neighborhoods centered at those points. Repeating

this for any n ∈N we let δ = 1
n and then there are finitely many points x(n)

1 , x(n)
2 , . . . , x(n)

Nn
such that

X is covered by δ-neighborhoods centered at those points. We now claim that the set

E = {x(1)
1 , x(1)

2 , . . . , x(1)
N1

,

x(2)
1 , x(2)

2 , . . . , x(2)
N2

,

x(3)
1 , x(3)

2 , . . . , x(3)
N3

,

. . .}

is a countable dense subset of X . It’s countable by Theorem 2.12. It’s dense because for any point

x ∈ X and any neighborhood Nr (x) for r > 0, we can choose a positive integer n such that 1
n < r ,

and then either x = x(n)
i for some 1 ≤ i ≤ Nn , or x is in some neighborhood N 1

n
(xi ) for some

1 ≤ i ≤ Nn because we have an open cover. That means that xi ∈ Nr (x) and xi 6= x, meaning x is a

limit point of E .

Problem 5 (WR Ch 2 #25). Prove that every compact metric space K has a countable base, and

that K is therefore separable.

Solution. For each n ∈N, make an open cover of K by neighborhoods of radius 1
n , and we have a

finite subcover by compactness, i.e.

K ⊂ ⋃
x∈K

N 1
n

(x) =⇒ ∃ x1, . . . , xN ∈ K such that K ⊂
N⋃

i=1
N 1

n
(xi )

Doing this for every n ∈N, we get a countable union of finite collections of sets, so that by Theorem

2.12, the collection of these sets, call it S, is countable.

We claim that S is a countable base for K , which is defined as a countable collection of open

sets such that for any x ∈ K and any open set G with x ∈G , there is some V ∈ S such that x ∈V ⊂G .

Let x ∈ K and let G be any open set with x ∈ G . Then since G is open, there is some r > 0 such

that Nr (x) ⊂G . Choose n ∈N such that 1
n < r /2, so that the maximal distance between points in a

neighborhood of radius 1
n is r . Then there must be some i such that x ∈ N 1

n
(xi ) ⊂ Nr (x) because

any neighborhood of radius 1/n containing x cannot contain points a distance more than r away.

This shows that S is a countable base.

The second part of the question asks us to show that K is separable. Let {Vn} be our countable

base for K . For each n ∈N, choose xn ∈ Vn , and let E = {xn |n ∈N}. We claim that E is a countable
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dense set, which would show that K is separable. First, note that E is clearly countable. To show

that it’s dense, we need to show that Ē = K . This is equivalent to showing that (Ē)c =;. Now (Ē)c

is an open set because it’s the complement of a closed set, Ē . If (Ē)c is nonempty, then there is

some x ∈ (Ē)c , which is open, so since {Vn} is a base, there is some n such that x ∈Vn ⊂ (Ē)c , which

implies that xn ∈ (Ē)c , a contradiction, because xn ∈ E ⇒ xn ∈ Ē ⇒ xn ∉ (Ē)c . Therefore,

(Ē)c =;, so that Ē = K .

Problem 6 (WR Ch 2 #26). Let X be a metric space in which every infinite subset has a limit point.

Prove that X is compact.

Solution. By exercises 23 and 24, X has a countable base. Thus for any open cover {Gα}, we can

write each Gα as a union of sets from the countable base, meaning that every open cover has

a countable subcover {Gn}. Assume by way of contradiction that no finite subcollection of {Gn}

covers X . By setting

Fn =
(

n⋃
i=1

Gi

)c

,

we have that Fn 6= ; for each n since if that were the case, X = F c
n =⋃n

i=1 Gi , which means {G1, . . . ,Gn}

would be a finite subcover. Notice also that Fn+1 ⊂ Fn , since we are only removing points as n goes

up. Now we also have

∞⋂
n=1

Fn =
∞⋂

n=1

(
n⋃

i=1
Gi

)c

=
( ∞⋃

n=1

(
n⋃

i=1
Gi

))c

=
( ∞⋃

i=1
Gi

)c

= X c =;,

since {Gn} is an open cover of X . Thus
⋂

Fn is empty. We now create an infinite set E by choosing

some xn ∈ Fn (which is nonempty) for each n ∈N and letting E = {xn |n ∈N}. The only way that E

could not be infinite is if some x ∈ E were in an infinite number of sets Fn , but that would make⋂
Fn nonempty. Since E is an infinite set, E has a limit point p (which is given in the beginning

of the problem statement). For each n, all but finitely many points of E lie in Fn , so P must be

a limit point of Fn for all n. But the Fn ’s are closed, so p ∈ Fn for all n, meaning that
⋂

Fn 6= ;, a

contradiction. Therefore, any open cover of X has a finite subcover, and thus X is compact.

Problem 7 (WR Ch 2 #29). Prove that every open set in R1 is the union of an at most countable

collection of disjoint segments.

Solution. By exercise 22, R1 is separable, and thus has a countable dense set, namelyQ.

Let G ⊂R be any open set. ThenQ∩G is a countable dense set in G by the Archimedean prop-

erty, and since G is open we can choose an open interval around every rational in G . Then G is the

union of that countable collection of intervals. However, we need to find a countable collection of

disjoint intervals. Notice that the union of any intervals which contain the same point is an inter-

val with a lower endpoint equal to the infimum of the lower endpoints of the intervals (possibly

−∞) and with an upper endpoint equal to the supremum of the upper endpoints of the intervals
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(possibly ∞). We create a new countable collection of intervals whose union is G by the following

procedure.

Take any point in G ∩Q and take the union of all intervals in G that contain it. Call this interval

I1. Now take some point in (G \ I1)∩Q and take the union of all intervals in G \ I1 that contain it.

Repeating this process we get a countable collection of disjoint intervals I1, I2, I3, . . ., each of which

is in G and which together cover G .

Problem 8 (WR Ch 2 #30). If Rk = ⋃∞
1 Fn , where Fn is a closed subset of Rk , then at least one Fn

has a nonempty interior.

Solution. Assume by way of contradiction that each Fn has an empty interior. Let Vn = ⋃n
i=1 Fi .

Since F1 is closed, F c
1 is open. If F c

1 were empty, then F1 = Rk , but then F ◦
1 6= ;, so instead F c

1

must be nonempty. Let K1 be some neighborhood in F c
1 such that K1 ∩V1 = ; (which we can

do by shrinking the neighborhood if necessary). Now if we have defined Kn so that Kn ∩Vn = ;,

we define Kn+1 by taking a neighborhood in Kn \ Fn+1, which is nonempty because Fn+1 has a

nonempty interior. By shrinking if necessary, we can ensure that Kn+1 ⊂ Kn . Notice again that

Kn+1 ∩Vn+1 =;. This last property gives us that
⋂∞

1 Kn is disjoint from every Fn . Also, since each

Kn is compact and Kn+1 ⊂ Kn then by Theorem 2.39 we know that
⋂∞

1 Kn is nonempty. Thus, there

is some point

x ∈
∞⋂
1

Kn ⊂
(∞⋃

1
Fn

)c

= (Rk )c =;,

a contradiction, since the empty set cannot have a point in it.
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