MATH 140A - HW 3 SOLUTIONS

Problem 1 (WR Ch 2 #12). Let K < R! consist of 0 and the numbers 1/n, for n=1,2,3,.... Prove

that K is compact directly from the definition (without using the Heine-Borel theorem).

Solution. Let {G,} be any open cover of K, which means each G, is an open set and together their
union U, G, contains K. In order to prove K is compact, we must show there is a finite subcover.
Since 0 € K c Uy Gg, there is some ag such that 0 € Go,. Now we know Gy, is an open set, and
an open set must contain a neighborhood of each of its points. Since 0 € Gg,, there is some r > 0
such that N;(0)  Gg,. Let N be the smallest integer that is greater than 1/r, which means N > %,

or equivalently, r > % Now notice that
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or more formally,
r>d0,%)>d0,77) > d0, 75>,

which means that the points %, ﬁ, ﬁ, are all in N, (0), which is contained in Gg,. So we

have one of the open sets that contains all but a finite number of points of K. The only points
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left to cover are 1, 59 Freees ﬁ Since 1 is in K c Uy G, there must be some a; such that 1 € Gg,.

Repeating this for the rest of the points left, we have sets Gg,, Gg;, ..., Gay_, containing the points
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3,3+ w7 respectively. Therefore,
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Kc | Gg,,

n=0

and we have found a finite subcover. Hence, K is compact.

Problem 2 (WR Ch 2 #13). Construct a compact set of real numbers whose limit points form a

countable set.
Solution. Let
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This is plotted below,
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A more illustrative plot follows, with the x-axis representing points of E and the y-axis represent-

ing different values of m to visually separate out different groups of points.
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Consider the points of the form p = zim with m € N. Any neighborhood of one of these points
of radius r > 0 will also contain the point g = Zim(l - %) where we choose the positive integer n
such that % <2™r,sothat|p—ql|= Izim — zim(l— %)I = Iﬁl < r. Since q # p and q € E, that means
p is a limit point, and thus E has at least a countably infinite number of limit points.

The fact that E is compact comes from its being closed (since it contains its limit points) and

bounded (since each point of E is contained in [0, %]).

Problem 3 (WR Ch 2 #22). A metric space is called separable if it contains a countable dense

subset. Show that R* is separable.

Solution. We claim that @k is dense in R¥. To show this, let p=(p1,..., P € R¥. In order to show
Q" is dense, we need to show that p € Q¥ or that p is a limit point of Q. So if p € Q¥, we’re done.
If p ¢ Q, we want to show that p is a limit point. Let N, (p) with 7 > 0 be a neighborhood of p. Let
6 = r/y/n, and since Q is dense in R, we can find some ¢q; # p; in Ns(p;) for i = 1,..., k. Then for
q=1(q1,...,qx) we have
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so that g € N, (p), and thus p is a limit point.

Thus QF is dense in R, and it is countable by Theorem 2.13, so R is separable.

Problem 4 (WR Ch 2 #24). Let X be a metric space in which every infinite subset has a limit point.

Prove that X is separable.

Solution. Fix 6 > 0 and pick x; € X. Having chosen x1,...,x; € X, choose x;,1 € X, if possible, so
that d(x;,xj41) = 6 for i = 1,..., j. This is essentially covering X by disjoint delta-balls centered
at the points x1, X2, .... If we can do this forever without having any overlap, then the set {x;|j € N}

is an infinite set without a limit point (since we have neighborhoods around each point that don’t



contain any other point in the set). But his is a contradiction, so this process must stop after a
finite number of steps, which means X can be covered by finitely many neighborhoods of radius
0. Since we have proved this for any § > 0, we can assign 6 to be anything greater than zero and

still have the same result.

Let § = 1. Then there are finitely many points xi”,xéu, ...,xﬁ\lh)

neighborhoods centered at those points. Now let § = % Then there are finitely many points

xiz), xf), oo xg\z,) such that X is covered by 6-neighborhoods centered at those points. Repeating
2
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-, and then there are finitely many points x;™, x,,..., Xy

X is covered by §-neighborhoods centered at those points. We now claim that the set

such that X is covered by 6-

this for any n e Nwe let § = such that
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is a countable dense subset of X. It's countable by Theorem 2.12. It’s dense because for any point
x € X and any neighborhood N, (x) for r > 0, we can choose a positive integer n such that % <r,
and then either x = x%") for some 1 < i < Ny, or x is in some neighborhood Nln (x;) for some
1 =i < N, because we have an open cover. That means that x; € N, (x) and x; # x, meaning x is a

limit point of E.

Problem 5 (WR Ch 2 #25). Prove that every compact metric space K has a countable base, and

that K is therefore separable.

Solution. For each n € N, make an open cover of K by neighborhoods of radius %, and we have a

finite subcover by compactness, i.e.

N
Kc |J N1 = 3 x1,...,xy € K such that K < | N1 (x;)
i=1 "
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Doing this for every n € N, we get a countable union of finite collections of sets, so that by Theorem
2.12, the collection of these sets, call it S, is countable.

We claim that S is a countable base for K, which is defined as a countable collection of open
sets such that for any x € K and any open set G with x € G, thereis some V € Ssuchthatx€ V cG.
Let x € K and let G be any open set with x € G. Then since G is open, there is some r > 0 such
that N, (x) € G. Choose n € N such that % < r/2, so that the maximal distance between points in a
neighborhood of radius % is r. Then there must be some i such that x € N (x;) € N,(x) because
any neighborhood of radius 1/7 containing x cannot contain points a distarnlce more than r away.
This shows that S is a countable base.

The second part of the question asks us to show that K is separable. Let {V,;} be our countable

base for K. For each n € N, choose x,, € V;;, and let E = {x,|n € N}. We claim that E is a countable



dense set, which would show that K is separable. First, note that E is clearly countable. To show
that it's dense, we need to show that E = K. This is equivalent to showing that (E)¢ = @. Now (E)°
is an open set because it's the complement of a closed set, E. If (E)¢ is nonempty, then there is
some x € (E)°, which is open, so since {V,,} is a base, there is some 7 such that x € V,,  (E)¢, which
implies that x, € (E)¢, a contradiction, because x,€E = x,€E = x,¢(E)°. Therefore,
(E)¢ = @, so that E = K.

Problem 6 (WR Ch 2 #26). Let X be a metric space in which every infinite subset has a limit point.

Prove that X is compact.

Solution. By exercises 23 and 24, X has a countable base. Thus for any open cover {G,}, we can
write each G, as a union of sets from the countable base, meaning that every open cover has
a countable subcover {G,,}. Assume by way of contradiction that no finite subcollection of {G,}

covers X. By setting

F,= G;

’
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we have that F,, # @ for each n since if that were the case, X = F§, = ;.1:1 G;, whichmeans {Gy, ..., G}
would be a finite subcover. Notice also that F;,.; c F;, since we are only removing points as n goes
up. Now we also have
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since {G,} is an open cover of X. Thus N F, is empty. We now create an infinite set E by choosing
some x, € F,, (which is nonempty) for each n € N and letting E = {x,|n € N}. The only way that E
could not be infinite is if some x € E were in an infinite number of sets F,,, but that would make
(N F, nonempty. Since E is an infinite set, E has a limit point p (which is given in the beginning
of the problem statement). For each n, all but finitely many points of E lie in F,, so P must be
a limit point of F, for all n. But the F,,’s are closed, so p € F, for all n, meaning that NF, # ¢, a

contradiction. Therefore, any open cover of X has a finite subcover, and thus X is compact.

Problem 7 (WR Ch 2 #29). Prove that every open set in R! is the union of an at most countable

collection of disjoint segments.

Solution. By exercise 22, R! is separable, and thus has a countable dense set, namely Q.

Let G c R be any open set. Then Q N G is a countable dense set in G by the Archimedean prop-
erty, and since G is open we can choose an open interval around every rational in G. Then G is the
union of that countable collection of intervals. However, we need to find a countable collection of
disjoint intervals. Notice that the union of any intervals which contain the same point is an inter-
val with a lower endpoint equal to the infimum of the lower endpoints of the intervals (possibly

—o0) and with an upper endpoint equal to the supremum of the upper endpoints of the intervals



(possibly co). We create a new countable collection of intervals whose union is G by the following
procedure.

Take any point in GNQ and take the union of all intervals in G that contain it. Call this interval
I. Now take some point in (G \ I;) N Q and take the union of all intervals in G\ I; that contain it.
Repeating this process we get a countable collection of disjoint intervals I, I, I3, ..., each of which

is in G and which together cover G.

Problem 8 (WR Ch 2 #30). IfR¥ = U Fp, where F), is a closed subset of R, then at least one F,,

has a nonempty interior.

Solution. Assume by way of contradiction that each F, has an empty interior. Let V,, = U} | F;.
Since Fj is closed, Fy is open. If F{ were empty, then F; = R¥, but then F} # @, so instead Ff
must be nonempty. Let K; be some neighborhood in F} such that KinV; = ¢ (which we can
do by shrinking the neighborhood if necessary). Now if we have defined K, so that K, NV, = @,
we define Kj,;; by taking a neighborhood in K, \ F;+;, which is nonempty because F;; has a
nonempty interior. By shrinking if necessary, we can ensure that K,;; < K,,. Notice again that
Kpt1 0 Vi1 = @. This last property gives us that ﬂ‘l’OK_n is disjoint from every F,. Also, since each
K,, is compact and K;,;1  K,, then by Theorem 2.39 we know that nge K, is nonempty. Thus, there

is some point
o _ o] c
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a contradiction, since the empty set cannot have a point in it.



