
Math 140a - HW 2 Solutions

Problem 1 (WR Ch 1 #2). A complex number z is said to be algebraic if there are integers

a0, . . . , an not all zero, such that

a0z
n + a1z

n−1 + · · ·+ an−1z + an = 0. (∗)

Prove that the set of all algebraic numbers is countable.

Solution. Pick some N ∈ N and define

EN =

{
z ∈ C

∣∣∣∣∣ ∃ a0, . . . , an ∈ Z not all zero such that

(∗) holds and n + |a0|+ · · ·+ |an| = N

}
.

Now if n ≥ N we have N − n ≤ 0, but then

n + |a0|+ · · ·+ |an| = N =⇒ |a0|+ · · ·+ |an| = N − n ≤ 0,

a contradiction because the ai’s cannot be all zero. Therefore, we must have that 0 < n < N .

Next, for any 0 ≤ i ≤ n we also have

|ai| ≤ |a0|+ · · ·+ |an| ≤ n + |a0|+ · · ·+ |an| = N.

Therefore, |ai| ≤ N for 0 ≤ i ≤ n. That means ai ∈ {−N,−N +1, . . . ,−1, 0, 1, . . . , N−1, N}
for 0 ≤ i ≤ n < N , so that there are at most 2N + 1 choices for each ai, and there are at

most N − 1 ai’s to chose for. Thus there are at most (2N + 1)N−1 choices for a0, . . . , an,

and each choice will give a polynomial with at most n roots by the fundamental theorem of

algebra (and remember n is at most N − 1). Thus the number of elements of EN is bounded

by the number (N − 1)(2N + 1)N−1, so EN is a finite set for every N ∈ N.

From here, we cite Theorem 2.12 to see that since the set of algebraic numbers can be

written as
⋃∞

N=1 EN , then the set of algebraic numbers is countable.

Problem 2 (WR Ch 1 #6). Let E′ be the set of all limit points of E. Prove that E′ is

closed. Prove that E and Ē have the same limit points. Do E and E′ always have the same

limit points?

Solution.

E′ is closed if every limit point of E′ is a point of E′. Let p be a limit point of E′. Then by

definition we have that every neighborhood Nr(p) of p contains a point q 6= p such that q ∈ E′.

Choose a real number R > 0 small enough that R < d(p, q) and so that NR(q) ⊂ Nr(p).

Since q is a limit point of E, there must be some t 6= q in NR(q) such that t ∈ E. But

then t ∈ NR(q) ⊂ Nr(p) and t 6= p since p /∈ NR(q). Therefore, we have shown that any

neighborhood of p contains some t 6= p with t ∈ E, so that p is a limit point of E.
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Now we want to show that E′ = (Ē)′. Let p ∈ E′. Then any neighborhood N of p contains

some q 6= p with q ∈ E. Since E ⊂ Ē, then q ∈ Ē, so p ∈ (Ē)′. This shows that E′ ⊂ (Ē)′.

To show the other direction of containment, let p ∈ (Ē)′. Then any neighborhood Nr(p)

contains some q 6= p with q ∈ Ē = E ∪ E′. If q ∈ E, then p ∈ E′ and we are done. Oth-

erwise, q ∈ E′. Choose a real number R > 0 small enough that R < d(p, q) and so that

NR(q) ⊂ Nr(p). Since q is a limit point of E, there must be some t 6= q in NR(q) such that

t ∈ E. But then t ∈ NR(q) ⊂ Nr(p) and t 6= p since p /∈ NR(q). Therefore, we have shown

that any neighborhood of p contains some t 6= p with t ∈ E, so that p is a limit point of E.

Thus E′ ⊂ (Ē)′, and we have shown that E′ = (Ē)′

E and E′ do not always have the same limit points, as proven by the existence of the

following counterexample. Let E = { 1
n |n ∈ N}. Then E′ = {0} and (E′)′ = ∅.

Problem 3 (WR Ch 1 #9). Let E◦ denote the set of all interior points of a set E.

(a) Prove that E◦ is always open.

Solution. An open set is one that contains all of its interior points. A point p is an

interior point of E◦ if there exists some neighborhood N of p with N ⊂ E◦. But

E◦ ⊂ E, so that N ⊂ E. Hence p ∈ E◦. This proves that E◦ contains all of its interior

points, and thus is open.

(b) Prove that E is open if and only if E◦ = E.

Solution.

=⇒ If E is open, all of its points are interior points, so that E ⊂ E◦. Also, the set of

interior points of E is a subset of the set of points of E, so that E◦ ⊂ E. Thus

E◦ = E.

⇐= If E◦ = E, then every point of E is an interior point of E, so E is open.

(c) If G ⊂ E and G is open, prove that G ⊂ E◦.

Solution. If p is an interior point of G, then there is some neighborhood N of p with

N ⊂ G. Since G ⊂ E, N ⊂ E, which shows that p is an interior point of E. Thus

G◦ ⊂ E◦. If G is open, then by part (c) we know that G = G◦. Hence G = G◦ ⊂ E◦.

(d) Prove that the complement of E◦ is the closure of the complement of E.

Solution.

(E◦)c ⊂ Ec By taking compliments, we have that

(E◦)c ⊂ Ec ⇐⇒ E◦ ⊃ ((Ec))c.
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Let G = ((Ec))c. G is the complement of the closed set (Ec), so it is open. Also,

Ec ⊂ (Ec), which by taking complements of both sides implies that E ⊃ ((Ec))c = G.

Therefore, by part (c), G ⊂ E◦, which we proved is equivalent to (E◦)c ⊂ Ec.

Ec ⊂ (E◦)c Any closed set containing Ec must also contain (Ec) by Theorem 2.27(c).

E◦ is open by part (a), and thus (E◦)c is closed by Theorem 2.23. Therefore, Ec ⊂
(E◦)c.

(e) Do E and Ē always have the same interiors?

Solution. No. Let E = Q. Then Ē = R. The interior of E is ∅; the interior of Ē is R.

(f) Do E and E◦ always have the same closures?

Solution. No. Let E = Q. Then E◦ = ∅. The closure of E is R; the closure of E◦ is ∅.
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