MATH 140A - HW 2 SOLUTIONS

Problem 1 (WR Ch 1 #2). A complex number z is said to be *algebraic* if there are integers a_0, \ldots, a_n not all zero, such that

$$a_0 z^n + a_1 z^{n-1} + \dots + a_{n-1} z + a_n = 0.$$
(*)

Prove that the set of all algebraic numbers is countable.

Solution. Pick some $N \in \mathbb{N}$ and define

$$E_N = \left\{ z \in \mathbb{C} \mid \exists a_0, \dots, a_n \in \mathbb{Z} \text{ not all zero such that} \\ (*) \text{ holds and } n + |a_0| + \dots + |a_n| = N \right\}$$

Now if $n \ge N$ we have $N - n \le 0$, but then

$$n+|a_0|+\cdots+|a_n|=N \qquad \Longrightarrow \qquad |a_0|+\cdots+|a_n|=N-n\leq 0,$$

a contradiction because the a_i 's cannot be all zero. Therefore, we must have that 0 < n < N. Next, for any $0 \le i \le n$ we also have

$$|a_i| \le |a_0| + \dots + |a_n| \le n + |a_0| + \dots + |a_n| = N.$$

Therefore, $|a_i| \leq N$ for $0 \leq i \leq n$. That means $a_i \in \{-N, -N+1, \ldots, -1, 0, 1, \ldots, N-1, N\}$ for $0 \leq i \leq n < N$, so that there are at most 2N + 1 choices for each a_i , and there are at most N - 1 a_i 's to chose for. Thus there are at most $(2N + 1)^{N-1}$ choices for a_0, \ldots, a_n , and each choice will give a polynomial with at most n roots by the fundamental theorem of algebra (and remember n is at most N - 1). Thus the number of elements of E_N is bounded by the number $(N - 1)(2N + 1)^{N-1}$, so E_N is a finite set for every $N \in \mathbb{N}$.

From here, we cite Theorem 2.12 to see that since the set of algebraic numbers can be written as $\bigcup_{N=1}^{\infty} E_N$, then the set of algebraic numbers is countable.

Problem 2 (WR Ch 1 #6). Let E' be the set of all limit points of E. Prove that E' is closed. Prove that E and \overline{E} have the same limit points. Do E and E' always have the same limit points?

Solution.

E' is closed if every limit point of E' is a point of E'. Let p be a limit point of E'. Then by definition we have that every neighborhood $N_r(p)$ of p contains a point $q \neq p$ such that $q \in E'$. Choose a real number R > 0 small enough that R < d(p,q) and so that $N_R(q) \subset N_r(p)$. Since q is a limit point of E, there must be some $t \neq q$ in $N_R(q)$ such that $t \in E$. But then $t \in N_R(q) \subset N_r(p)$ and $t \neq p$ since $p \notin N_R(q)$. Therefore, we have shown that any neighborhood of p contains some $t \neq p$ with $t \in E$, so that p is a limit point of E. Now we want to show that $E' = (\bar{E})'$. Let $p \in E'$. Then any neighborhood N of p contains some $q \neq p$ with $q \in E$. Since $E \subset \bar{E}$, then $q \in \bar{E}$, so $p \in (\bar{E})'$. This shows that $E' \subset (\bar{E})'$. To show the other direction of containment, let $p \in (\bar{E})'$. Then any neighborhood $N_r(p)$ contains some $q \neq p$ with $q \in \bar{E} = E \cup E'$. If $q \in E$, then $p \in E'$ and we are done. Otherwise, $q \in E'$. Choose a real number R > 0 small enough that R < d(p,q) and so that $N_R(q) \subset N_r(p)$. Since q is a limit point of E, there must be some $t \neq q$ in $N_R(q)$ such that $t \in E$. But then $t \in N_R(q) \subset N_r(p)$ and $t \neq p$ since $p \notin N_R(q)$. Therefore, we have shown that any neighborhood of p contains some $t \neq p$ with $t \in E$, so that p is a limit point of E. Thus $E' \subset (\bar{E})'$, and we have shown that $E' = (\bar{E})'$

E and E' do not always have the same limit points, as proven by the existence of the following counterexample. Let $E = \{\frac{1}{n} | n \in \mathbb{N}\}$. Then $E' = \{0\}$ and $(E')' = \emptyset$.

Problem 3 (WR Ch 1 #9). Let E° denote the set of all interior points of a set E.

(a) Prove that E° is always open.

Solution. An open set is one that contains all of its interior points. A point p is an interior point of E° if there exists some neighborhood N of p with $N \subset E^{\circ}$. But $E^{\circ} \subset E$, so that $N \subset E$. Hence $p \in E^{\circ}$. This proves that E° contains all of its interior points, and thus is open.

(b) Prove that E is open if and only if $E^{\circ} = E$.

Solution.

 \implies If E is open, all of its points are interior points, so that $E \subset E^{\circ}$. Also, the set of interior points of E is a subset of the set of points of E, so that $E^{\circ} \subset E$. Thus $E^{\circ} = E$.

 $\overleftarrow{\leftarrow}$ If $E^{\circ} = E$, then every point of E is an interior point of E, so E is open.

(c) If $G \subset E$ and G is open, prove that $G \subset E^{\circ}$.

Solution. If p is an interior point of G, then there is some neighborhood N of p with $N \subset G$. Since $G \subset E$, $N \subset E$, which shows that p is an interior point of E. Thus $G^{\circ} \subset E^{\circ}$. If G is open, then by part (c) we know that $G = G^{\circ}$. Hence $G = G^{\circ} \subset E^{\circ}$.

(d) Prove that the complement of E° is the closure of the complement of E.

Solution. $(E^{\circ})^c \subset \overline{E^c}$ By taking compliments, we have that

 $(E^{\circ})^c \subset \overline{E^c} \iff E^{\circ} \supset (\overline{(E^c)})^c.$

Let $G = (\overline{(E^c)})^c$. G is the complement of the closed set $\overline{(E^c)}$, so it is open. Also, $E^c \subset \overline{(E^c)}$, which by taking complements of both sides implies that $E \supset (\overline{(E^c)})^c = G$. Therefore, by part (c), $G \subset E^\circ$, which we proved is equivalent to $(E^\circ)^c \subset \overline{E^c}$. $\boxed{\overline{E^c} \subset (E^\circ)^c}$ Any closed set containing E^c must also contain $\overline{(E^c)}$ by Theorem 2.27(c). E° is open by part (a), and thus $(E^\circ)^c$ is closed by Theorem 2.23. Therefore, $\overline{E^c} \subset (E^\circ)^c$.

- (e) Do E and \overline{E} always have the same interiors? Solution. No. Let $E = \mathbb{Q}$. Then $\overline{E} = \mathbb{R}$. The interior of E is \emptyset ; the interior of \overline{E} is \mathbb{R} .
- (f) Do E and E° always have the same closures? Solution. No. Let E = Q. Then E° = Ø. The closure of E is ℝ; the closure of E° is Ø.