
Math 140a - HW 1 Solutions

Problem 1 (WR Ch 1 #1). If r is rational (r 6= 0) and x is irrational, prove that r + x and

rx are irrational.

Solution. Given that r is rational, we can write r = a
b for some integers a and b. We are

also given that x is irrational. From here, we proceed with a proof by contradiction. We

first assume that r + x is rational, and then we use this fact in some way to show that x is

rational, contradicting one of the facts we were given. This will prove that r + x is instead

irrational.

So if r + x is rational, we can write r + x = c
d for some relatively prime integers c and d.

But then

x =
c

d
− r =

c

d
− a

b
=

bc− ad

bd
,

and thus x is rational, which is a contradiction. Therefore, r + x is irrational.

Next, we prove that rx is irrational using a similar contradiction proof. Assume that rx

is rational. Then we can write rx = c
d for some integers c and d. But then

x =
c

rd
=

c
a
b d

=
bc

ad
,

and thus x is rational, which is a contradiction. Therefore, rx is irrational.

Problem 2 (WR Ch 1 #2). Prove that there is no rational number whose square is 12.

Solution. Let x be a rational number such that x2 = 12. Then we can write x = a
b , and

furthermore, we can choose a and b to be relatively prime (which means there is no prime

number dividing both a and b), so that the fraction a
b is written in lowest terms. With a

little algebraic manipulation,

12 = x2 =
a2

b2
=⇒ 12b2 = a2.

Now, the prime factorization of 12 is 22 · 31, so since there is an odd number of factors of

3 (just 1), we’ll concentrate on 3 and how it divides both sides of the equation 12b2 = a2.

Notice that 3 divides the left side since it has a factor of 12. Therefore, 3 must divide the

right side of the equation, a2. From here, the crucial step is realizing that if 3 divides a2,

then it must also divide a. This is because if we factor a2 into its prime factors, saying that

3 divides a2 is equivalent to saying that 3 is one of those prime factors, but a square of an

integer must have an even number of each factor (it can’t have just 1), so that means 32 must

divide a2, and 3 must divide a.

Since we have shown that 32 divides the right side, 32 must divide the left side, but there

is only one factor of 3 in 12, so that means 3 divides b2. Using the same logic as before, this

means that 3 must divide b.
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Therefore, we have shown that 3 divides both a and b, but this contradicts the fact that

we already chose a and b to be relatively prime (so that a
b would be expressed in lowest

terms). Since our initial assumption leads to a contradiction, we have instead that there is

no rational number whose square is 12.

Problem 3 (WR Ch 1 #7). Fix b > 1, y > 0, and prove that there is a unique real x such

that bx = y, by completing the following outline. (This is called the logarithm of y to the

base b.)

(a) For any positive integer n, bn − 1 ≥ n(b− 1).

Solution. First, we factorize the left hand side:

bn − 1 = (b− 1)(bn−1 + bn−2 + · · ·+ b2 + b + 1).

Then, since b > 1, we know that bn−1 + bn−2 + · · ·+ b2 + b + 1 ≥ n. So

bn − 1 = (b− 1)(bn−1 + bn−2 + · · ·+ b2 + b + 1) ≥ (b− 1)n.

(b) Hence b− 1 ≥ n(b1/n − 1).

Solution. If b > 1 then b1/n > 1, so since we proved that bn − 1 ≥ n(b − 1) for any

b > 1, we can substitute b1/n for b in that equation to get that b− 1 ≥ n(b1/n − 1).

(c) If t > 1 and n > (b− 1)/(t− 1), then b1/n < t.

Solution. n > (b− 1)/(t− 1) implies that n(t− 1) > (b− 1). Using the previous result

for the second inequality,

n(t− 1) > (b− 1) ≥ n(b1/n − 1).

Therefore, n(t− 1) > n(b1/n − 1). Dividing by n 6= 0 we have that

t− 1 > b1/n − 1.

Then we add 1 to both sides to get the result.

(d) If w is such that bw < y, then bw+(1/n) < y for sufficiently large n; to see this, apply

part (c) with t = y · b−w.

Solution. First of all, bw < y implies that yb−w > 1. Therefore, for t = yb−w, we have

t > 1, so if we also choose some n > b−1
yb−w−1 we can then use part (c) to get that

b1/n < t =⇒ b1/n < yb−w =⇒ bw+(1/n) < y.
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(e) If bw > y, then bw−(1/n) > y for sufficiently large n.

Solution. First of all, bw > y implies that y−1bw > 1. Therefore, for t = y−1bw, we

have t > 1, so if we also choose some n > b−1
y−1bw−1 we can then use part (c) to get that

b1/n < t =⇒ b1/n < y−1bw =⇒ y < bw−(1/n).

(f) Let A be the set of all w such that bw < y, and show that x = sup A satisfies bx = y.

Solution. To show that bx = y, we will first show that bx is not greater than y and then

show that it is not less than y.

Assume (by way of contradiction) that bx > y. Then by part (e), there is some integer

n such that bx−(1/n) > y. However, this means that x− (1/n) is an upper bound for A,

but since x−(1/n) < x, this means that x is not the least upper bound, a contradiction

of the definition of x as the supremum of A. Therefore, instead we have that bx is not

greater than y, or equivalently, bx ≤ y.

Next assume (by way of contradiction) that bx < y. Then by part (d), there is some

integer n such that bx+(1/n) < y. However, this means that x + (1/n) ∈ A, but

x < x + (1/n), which means that x is not an upper bound, a contradiction of the

definition of x as the supremum of A. Therefore, instead we have that bx is not less

than y, or equivalently, bx ≥ y.

(g) Prove that this x is unique.

Solution. Assume there is some other z ∈ R such that y = bz. Then

bx = y = bz.

If we assume that x 6= z, then either x > z or z > x. In the first case, we divide both

sides of the above equation by bz to get bx−z = 1 (and note that x− z is a positive real

number). However, b > 1, so that bw > 1 for any positive real number w, contradicting

the fact that bx−z = 1. In the second case, we divide both sides of the above equation

by bx to get bz−x = 1 (and note that z − x is a positive real number). However, b > 1,

so that bw > 1 for any positive real number w, contradicting the fact that bx−z = 1.

Problem 4 (WR Ch 1 #9). Suppose z = a + bi, w = c + di. Define z < w if a < c, and also

if a = c but b < d. Prove that this turns the set of all complex numbers into an ordered set

(This type of order relation is called a dictionary order, or lexicographic order, for obvious

reasons.) Does this ordered set have the least-upper-bound property?

Solution. To prove that “<” is an order on the set of all complex numbers, we need to check

the two axioms of an ordered set.
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The first is that for any z, w ∈ C, one and only one of the statements z < w, z = w, or

z > w is true. To show that this is true, we need to break the proof up into cases using the

first axiom of the usual ordering for real numbers:

Case 1 : a < c. This results in z < w.

Case 2 : a = c. Here we are again essentially using the first axiom of the usual ordering for

real numbers. We must have exactly one of the following cases: b < d, b = d, or b > d.

From here, b < d if and only if z < w; b = d if and only if z = w; and b > d if and only

if z > w.

Case 3 : a > c. This results in z > w.

Next we prove the second axiom, which is that for any z, y, w ∈ C,

z < y and y < w =⇒ z < w.

For notation, let y = e + fi. Then if z < y we know that either a < e or a = e and b < f .

Likewise, if y < w we know that either e < c or e = c and f < d. This give us four possible

cases to check:

Case 1 : a < e and e < c. By the transitive property of the usual ordering for the real numbers,

we then know that a < c, which implies that z < w.

Case 2 : a < e and e = c. Then a < c, which implies that z < w.

Case 3 : a = e and e < c. Then a < c, which implies that z < w.

Case 4 : a = e and e = c, with b < f and f < d. Then by the transitive property of the usual

ordering for the real numbers, we then know that b < d, which means that a = c and

b < d, so that z < w.

Lastly, in order to show that C doesn’t have the least upper bound property, we need to

find a subset of C that has no least upper bound. There are plenty, but let’s consider the set

A = {z ∈ C|z = a + bi for some a, b ∈ R, and a < 0}.

Assume there is a least upper bound w = c + di. Then if c > 0, we know that 0 + di < w,

and 0 + di is an upper bound for A, contradicting the fact that w is a least upper bound. If

c < 0, then c/2 + di is a complex number with a negative real part, so c/2 + di is in A and

c+di < c/2 +di, contradicting the fact that w is an upper bound. Therefore c = 0, and thus

w is of the form di for some d ∈ R.

However, for any choice of d ∈ R, the complex number (d− 1)i is an upper bound for A

which is less than di under the order, contradicting the fact that w is a a least upper bound

once again. Hence, A has no least upper bound, and more generally C does not have the

least upper bound property with the order described above.
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Problem 5 (WR Ch 1 #17). Prove that

|x + y|2 + |x− y|2 = 2|x|2 + 2|y|2

if x ∈ Rk and y ∈ Rk. Interpret this geometrically, as a statement about parallelograms.

Solution. Let x = (x1, . . . , xn) and y = (y1, . . . , yn). Then

|x + y|2 + |x− y|2 =
(√

(x1 + y1)2 + · · ·+ (xn + yn)2
)2

+
(√

(x1 − y1)2 + · · ·+ (xn − yn)2
)2

= (x1 + y1)2 + · · ·+ (xn + yn)2 + (x1 − y1)2 + · · ·+ (xn − yn)2

= (x2
1 + 2x1y1 + y2

1) + · · ·+ (x2
n + 2xnyn + y2

n) + (x2
1 − 2x1y1 + y2

1) + · · ·+ (x2
n − 2xnyn + y2

n)

= (x2
1 +���2x1y1 + y2

1) + · · ·+ (x2
n +���2xnyn + y2

n) + (x2
1 −���2x1y1 + y2

1) + · · ·+ (x2
n −���2xnyn + y2

n)

= 2(x2
1 + · · ·+ x2

n) + 2(y2
1 + · · ·+ y2

n)

= 2
(√

x2
1 + · · ·+ x2

n

)2

+ 2
(√

y2
1 + · · ·+ y2

n

)2

= 2|x|2 + 2|y|2.

Interpreted geometrically, the statement simply says that:

The sum of the squares of the diagonals of a parallelogram is equal to twice the

sum of the squares of the sides.
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