Math 140A - HW 1 Solutions

Problem $1($ WR Ch $1 \# 1)$. If r is rational $(r \neq 0)$ and x is irrational, prove that $r+x$ and $r x$ are irrational.

Solution. Given that r is rational, we can write $r=\frac{a}{b}$ for some integers a and b. We are also given that x is irrational. From here, we proceed with a proof by contradiction. We first assume that $r+x$ is rational, and then we use this fact in some way to show that x is rational, contradicting one of the facts we were given. This will prove that $r+x$ is instead irrational.

So if $r+x$ is rational, we can write $r+x=\frac{c}{d}$ for some relatively prime integers c and d. But then

$$
x=\frac{c}{d}-r=\frac{c}{d}-\frac{a}{b}=\frac{b c-a d}{b d}
$$

and thus x is rational, which is a contradiction. Therefore, $r+x$ is irrational.
Next, we prove that $r x$ is irrational using a similar contradiction proof. Assume that $r x$ is rational. Then we can write $r x=\frac{c}{d}$ for some integers c and d. But then

$$
x=\frac{c}{r d}=\frac{c}{\frac{a}{b} d}=\frac{b c}{a d},
$$

and thus x is rational, which is a contradiction. Therefore, $r x$ is irrational.

Problem 2 (WR Ch $1 \# 2$). Prove that there is no rational number whose square is 12.
Solution. Let x be a rational number such that $x^{2}=12$. Then we can write $x=\frac{a}{b}$, and furthermore, we can choose a and b to be relatively prime (which means there is no prime number dividing both a and b), so that the fraction $\frac{a}{b}$ is written in lowest terms. With a little algebraic manipulation,

$$
12=x^{2}=\frac{a^{2}}{b^{2}} \quad \Longrightarrow \quad 12 b^{2}=a^{2}
$$

Now, the prime factorization of 12 is $2^{2} \cdot 3^{1}$, so since there is an odd number of factors of 3 (just 1), we'll concentrate on 3 and how it divides both sides of the equation $12 b^{2}=a^{2}$. Notice that 3 divides the left side since it has a factor of 12 . Therefore, 3 must divide the right side of the equation, a^{2}. From here, the crucial step is realizing that if 3 divides a^{2}, then it must also divide a. This is because if we factor a^{2} into its prime factors, saying that 3 divides a^{2} is equivalent to saying that 3 is one of those prime factors, but a square of an integer must have an even number of each factor (it can't have just 1), so that means 3^{2} must divide a^{2}, and 3 must divide a.

Since we have shown that 3^{2} divides the right side, 3^{2} must divide the left side, but there is only one factor of 3 in 12 , so that means 3 divides b^{2}. Using the same logic as before, this means that 3 must divide b.

Therefore, we have shown that 3 divides both a and b, but this contradicts the fact that we already chose a and b to be relatively prime (so that $\frac{a}{b}$ would be expressed in lowest terms). Since our initial assumption leads to a contradiction, we have instead that there is no rational number whose square is 12 .

Problem 3 (WR Ch $1 \# 7$). Fix $b>1, y>0$, and prove that there is a unique real x such that $b^{x}=y$, by completing the following outline. (This is called the logarithm of y to the base b.)
(a) For any positive integer $n, b^{n}-1 \geq n(b-1)$.

Solution. First, we factorize the left hand side:

$$
b^{n}-1=(b-1)\left(b^{n-1}+b^{n-2}+\cdots+b^{2}+b+1\right)
$$

Then, since $b>1$, we know that $b^{n-1}+b^{n-2}+\cdots+b^{2}+b+1 \geq n$. So

$$
b^{n}-1=(b-1)\left(b^{n-1}+b^{n-2}+\cdots+b^{2}+b+1\right) \geq(b-1) n
$$

(b) Hence $b-1 \geq n\left(b^{1 / n}-1\right)$.

Solution. If $b>1$ then $b^{1 / n}>1$, so since we proved that $b^{n}-1 \geq n(b-1)$ for any $b>1$, we can substitute $b^{1 / n}$ for b in that equation to get that $b-1 \geq n\left(b^{1 / n}-1\right)$.
(c) If $t>1$ and $n>(b-1) /(t-1)$, then $b^{1 / n}<t$.

Solution. $n>(b-1) /(t-1)$ implies that $n(t-1)>(b-1)$. Using the previous result for the second inequality,

$$
n(t-1)>(b-1) \geq n\left(b^{1 / n}-1\right)
$$

Therefore, $n(t-1)>n\left(b^{1 / n}-1\right)$. Dividing by $n \neq 0$ we have that

$$
t-1>b^{1 / n}-1
$$

Then we add 1 to both sides to get the result.
(d) If w is such that $b^{w}<y$, then $b^{w+(1 / n)}<y$ for sufficiently large n; to see this, apply part (c) with $t=y \cdot b^{-w}$.

Solution. First of all, $b^{w}<y$ implies that $y b^{-w}>1$. Therefore, for $t=y b^{-w}$, we have $t>1$, so if we also choose some $n>\frac{b-1}{y b^{-w}-1}$ we can then use part (c) to get that

$$
b^{1 / n}<t \quad \Longrightarrow \quad b^{1 / n}<y b^{-w} \quad \Longrightarrow \quad b^{w+(1 / n)}<y .
$$

(e) If $b^{w}>y$, then $b^{w-(1 / n)}>y$ for sufficiently large n.

Solution. First of all, $b^{w}>y$ implies that $y^{-1} b^{w}>1$. Therefore, for $t=y^{-1} b^{w}$, we have $t>1$, so if we also choose some $n>\frac{b-1}{y^{-1} b^{w}-1}$ we can then use part (c) to get that

$$
b^{1 / n}<t \quad \Longrightarrow \quad b^{1 / n}<y^{-1} b^{w} \quad \Longrightarrow \quad y<b^{w-(1 / n)}
$$

(f) Let A be the set of all w such that $b^{w}<y$, and show that $x=\sup A$ satisfies $b^{x}=y$.

Solution. To show that $b^{x}=y$, we will first show that b^{x} is not greater than y and then show that it is not less than y.

Assume (by way of contradiction) that $b^{x}>y$. Then by part (e), there is some integer n such that $b^{x-(1 / n)}>y$. However, this means that $x-(1 / n)$ is an upper bound for A, but since $x-(1 / n)<x$, this means that x is not the least upper bound, a contradiction of the definition of x as the supremum of A. Therefore, instead we have that b^{x} is not greater than y, or equivalently, $b^{x} \leq y$.

Next assume (by way of contradiction) that $b^{x}<y$. Then by part (d), there is some integer n such that $b^{x+(1 / n)}<y$. However, this means that $x+(1 / n) \in A$, but $x<x+(1 / n)$, which means that x is not an upper bound, a contradiction of the definition of x as the supremum of A. Therefore, instead we have that b^{x} is not less than y, or equivalently, $b^{x} \geq y$.
(g) Prove that this x is unique.

Solution. Assume there is some other $z \in \mathbb{R}$ such that $y=b^{z}$. Then

$$
b^{x}=y=b^{z}
$$

If we assume that $x \neq z$, then either $x>z$ or $z>x$. In the first case, we divide both sides of the above equation by b^{z} to get $b^{x-z}=1$ (and note that $x-z$ is a positive real number). However, $b>1$, so that $b^{w}>1$ for any positive real number w, contradicting the fact that $b^{x-z}=1$. In the second case, we divide both sides of the above equation by b^{x} to get $b^{z-x}=1$ (and note that $z-x$ is a positive real number). However, $b>1$, so that $b^{w}>1$ for any positive real number w, contradicting the fact that $b^{x-z}=1$.

Problem 4 (WR Ch 1 \#9). Suppose $z=a+b i, w=c+d i$. Define $z<w$ if $a<c$, and also if $a=c$ but $b<d$. Prove that this turns the set of all complex numbers into an ordered set (This type of order relation is called a dictionary order, or lexicographic order, for obvious reasons.) Does this ordered set have the least-upper-bound property?

Solution. To prove that " $<$ " is an order on the set of all complex numbers, we need to check the two axioms of an ordered set.

The first is that for any $z, w \in \mathbb{C}$, one and only one of the statements $z<w, z=w$, or $z>w$ is true. To show that this is true, we need to break the proof up into cases using the first axiom of the usual ordering for real numbers:

Case 1: $a<c$. This results in $z<w$.
Case $2: a=c$. Here we are again essentially using the first axiom of the usual ordering for real numbers. We must have exactly one of the following cases: $b<d, b=d$, or $b>d$. From here, $b<d$ if and only if $z<w ; b=d$ if and only if $z=w$; and $b>d$ if and only if $z>w$.

Case $3: a>c$. This results in $z>w$.
Next we prove the second axiom, which is that for any $z, y, w \in \mathbb{C}$,

$$
z<y \text { and } y<w \quad \Longrightarrow \quad z<w
$$

For notation, let $y=e+f i$. Then if $z<y$ we know that either $a<e$ or $a=e$ and $b<f$. Likewise, if $y<w$ we know that either $e<c$ or $e=c$ and $f<d$. This give us four possible cases to check:

Case 1: $a<e$ and $e<c$. By the transitive property of the usual ordering for the real numbers, we then know that $a<c$, which implies that $z<w$.

Case 2: $a<e$ and $e=c$. Then $a<c$, which implies that $z<w$.
Case 3 : $a=e$ and $e<c$. Then $a<c$, which implies that $z<w$.
Case $4: a=e$ and $e=c$, with $b<f$ and $f<d$. Then by the transitive property of the usual ordering for the real numbers, we then know that $b<d$, which means that $a=c$ and $b<d$, so that $z<w$.

Lastly, in order to show that \mathbb{C} doesn't have the least upper bound property, we need to find a subset of \mathbb{C} that has no least upper bound. There are plenty, but let's consider the set

$$
A=\{z \in \mathbb{C} \mid z=a+b i \text { for some } a, b \in \mathbb{R}, \text { and } a<0\}
$$

Assume there is a least upper bound $w=c+d i$. Then if $c>0$, we know that $0+d i<w$, and $0+d i$ is an upper bound for A, contradicting the fact that w is a least upper bound. If $c<0$, then $c / 2+d i$ is a complex number with a negative real part, so $c / 2+d i$ is in A and $c+d i<c / 2+d i$, contradicting the fact that w is an upper bound. Therefore $c=0$, and thus w is of the form $d i$ for some $d \in \mathbb{R}$.

However, for any choice of $d \in \mathbb{R}$, the complex number $(d-1) i$ is an upper bound for A which is less than $d i$ under the order, contradicting the fact that w is a a least upper bound once again. Hence, A has no least upper bound, and more generally \mathbb{C} does not have the least upper bound property with the order described above.

Problem 5 (WR Ch $1 \# 17$). Prove that

$$
|x+y|^{2}+|x-y|^{2}=2|x|^{2}+2|y|^{2}
$$

if $x \in \mathbb{R}^{k}$ and $y \in \mathbb{R}^{k}$. Interpret this geometrically, as a statement about parallelograms.
Solution. Let $x=\left(x_{1}, \ldots, x_{n}\right)$ and $y=\left(y_{1}, \ldots, y_{n}\right)$. Then

$$
\begin{aligned}
& |x+y|^{2}+|x-y|^{2}=\left(\sqrt{\left(x_{1}+y_{1}\right)^{2}+\cdots+\left(x_{n}+y_{n}\right)^{2}}\right)^{2}+\left(\sqrt{\left(x_{1}-y_{1}\right)^{2}+\cdots+\left(x_{n}-y_{n}\right)^{2}}\right)^{2} \\
& \quad=\left(x_{1}+y_{1}\right)^{2}+\cdots+\left(x_{n}+y_{n}\right)^{2}+\left(x_{1}-y_{1}\right)^{2}+\cdots+\left(x_{n}-y_{n}\right)^{2} \\
& \quad=\left(x_{1}^{2}+2 x_{1} y_{1}+y_{1}^{2}\right)+\cdots+\left(x_{n}^{2}+2 x_{n} y_{n}+y_{n}^{2}\right)+\left(x_{1}^{2}-2 x_{1} y_{1}+y_{1}^{2}\right)+\cdots+\left(x_{n}^{2}-2 x_{n} y_{n}+y_{n}^{2}\right) \\
& \quad=\left(x_{1}^{2}+2 x_{1} y_{1}+y_{1}^{2}\right)+\cdots+\left(x_{n}^{2}+2 x_{n} y_{n}+y_{n}^{2}\right)+\left(x_{1}^{2}-2 x_{1} y_{1}+y_{1}^{2}\right)+\cdots+\left(x_{n}^{2}-2 x_{n} y_{n}+y_{n}^{2}\right) \\
& \quad=2\left(x_{1}^{2}+\cdots+x_{n}^{2}\right)+2\left(y_{1}^{2}+\cdots+y_{n}^{2}\right) \\
& \quad=2\left(\sqrt{x_{1}^{2}+\cdots+x_{n}^{2}}\right)^{2}+2\left(\sqrt{y_{1}^{2}+\cdots+y_{n}^{2}}\right)^{2} \\
& \quad=2|x|^{2}+2|y|^{2} .
\end{aligned}
$$

Interpreted geometrically, the statement simply says that:
The sum of the squares of the diagonals of a parallelogram is equal to twice the sum of the squares of the sides.

