MATH 140A - HW 1 SOLUTIONS

Problem 1 (WR Ch 1 #1). If r is rational (r # 0) and z is irrational, prove that r + z and

rx are irrational.

Solution. Given that r is rational, we can write r = § for some integers a and b. We are
also given that z is irrational. From here, we proceed with a proof by contradiction. We
first assume that r + x is rational, and then we use this fact in some way to show that x is
rational, contradicting one of the facts we were given. This will prove that r + z is instead
irrational.

So if 7 + = is rational, we can write r + 2 = ¢ for some relatively prime integers ¢ and d.
But then
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and thus z is rational, which is a contradiction. Therefore, r + x is irrational.

Next, we prove that rx is irrational using a similar contradiction proof. Assume that rz
is rational. Then we can write rz = § for some integers ¢ and d. But then
c c be
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and thus z is rational, which is a contradiction. Therefore, ra is irrational.

Problem 2 (WR Ch 1 #2). Prove that there is no rational number whose square is 12.

Solution. Let x be a rational number such that 22 = 12. Then we can write x = %, and
furthermore, we can choose a and b to be relatively prime (which means there is no prime
a

number dividing both a and b), so that the fraction § is written in lowest terms. With a

little algebraic manipulation,

a
12 =27 = 7 = 126* = a”.
Now, the prime factorization of 12 is 22 - 3!, so since there is an odd number of factors of

3 (just 1), we’ll concentrate on 3 and how it divides both sides of the equation 12b* = a?.

Notice that 3 divides the left side since it has a factor of 12. Therefore, 3 must divide the

2, From here, the crucial step is realizing that if 3 divides a2,

right side of the equation, a
then it must also divide a. This is because if we factor a? into its prime factors, saying that
3 divides a? is equivalent to saying that 3 is one of those prime factors, but a square of an
integer must have an even number of each factor (it can’t have just 1), so that means 3% must
divide a?, and 3 must divide a.

Since we have shown that 32 divides the right side, 3% must divide the left side, but there
is only one factor of 3 in 12, so that means 3 divides b%. Using the same logic as before, this

means that 3 must divide b.



Therefore, we have shown that 3 divides both a and b, but this contradicts the fact that

we already chose a and b to be relatively prime (so that § would be expressed in lowest

terms). Since our initial assumption leads to a contradiction, we have instead that there is

no rational number whose square is 12.

Problem 3 (WR Ch 1 #7). Fix b > 1, y > 0, and prove that there is a unique real x such
that b* = y, by completing the following outline. (This is called the logarithm of y to the
base b.)

(a)

(b)

(c)

(d)

For any positive integer n, b™ — 1 > n(b — 1).
Solution. First, we factorize the left hand side:

V' —1=(b-1)0" "+ 0" 4 Db+ 1).
Then, since b > 1, we know that "' + "2 4+... +b24+b+1>n. So

VP —1=(b-1)0" 0"+ b2+ b+ 1) > (b D)n.

Hence b — 1 > n(b"/™ —1).

Solution. If b > 1 then b'/™ > 1, so since we proved that b” — 1 > n(b — 1) for any
b > 1, we can substitute b'/™ for b in that equation to get that b —1 > n(b'/™ —1).

Ift>1andn> (b—1)/(t — 1), then b'/™ < t.
Solution. n > (b—1)/(t — 1) implies that n(t — 1) > (b — 1). Using the previous result
for the second inequality,
n(t—1)> (b—1) > n(b/™ —1).
Therefore, n(t — 1) > n(b*/™ — 1). Dividing by n # 0 we have that
t—1>b/" 1.
Then we add 1 to both sides to get the result.

If w is such that b¥ < y, then b* (/") < 4 for sufficiently large n; to see this, apply
part (c¢) with ¢t =gy -b~".
Solution. First of all, b < y implies that yb~* > 1. Therefore, for ¢t = yb~", we have

t > 1, so if we also choose some n > we can then use part (¢) to get that

b—1
yb—w—1

W<t = b <ypv = Ut/ <y



(e) If b > 5, then b~ (/™) > y for sufficiently large n.

Solution. First of all, b > y implies that y~'6® > 1. Therefore, for t = y~1b¥, we

have ¢ > 1, so if we also choose some n > m -1

—pe—1 we can then use part (c) to get that

U<t = b <y —  y< b/,

(f) Let A be the set of all w such that b* < y, and show that x = sup A satisfies b* = y.

Solution. To show that b* = y, we will first show that b® is not greater than y and then

show that it is not less than y.

Assume (by way of contradiction) that b* > y. Then by part (e), there is some integer
n such that 5*~(1/") > y. However, this means that x — (1/n) is an upper bound for A,
but since . — (1/n) < x, this means that x is not the least upper bound, a contradiction
of the definition of x as the supremum of A. Therefore, instead we have that b* is not

greater than y, or equivalently, b* < y.

Next assume (by way of contradiction) that b* < y. Then by part (d), there is some
integer n such that »**(1/™ < y. However, this means that = + (1/n) € A, but
z < z + (1/n), which means that = is not an upper bound, a contradiction of the
definition of x as the supremum of A. Therefore, instead we have that b* is not less

than y, or equivalently, b > y.

(g) Prove that this x is unique.

Solution. Assume there is some other z € R such that y = b*. Then
b* =y =b°.

If we assume that = # z, then either x > z or z > x. In the first case, we divide both
sides of the above equation by b* to get b*~% = 1 (and note that x — z is a positive real
number). However, b > 1, so that " > 1 for any positive real number w, contradicting
the fact that 6% = 1. In the second case, we divide both sides of the above equation
by b* to get b*~* = 1 (and note that z — x is a positive real number). However, b > 1,

so that b* > 1 for any positive real number w, contradicting the fact that b*~* = 1.

Problem 4 (WR Ch 1 #9). Suppose z = a+ bi, w = ¢+ di. Define z < w if a < ¢, and also
if a = ¢ but b < d. Prove that this turns the set of all complex numbers into an ordered set
(This type of order relation is called a dictionary order, or lexicographic order, for obvious

reasons.) Does this ordered set have the least-upper-bound property?

Solution. To prove that “<” is an order on the set of all complex numbers, we need to check

the two axioms of an ordered set.



The first is that for any z,w € C, one and only one of the statements z < w, z = w, or
z > w is true. To show that this is true, we need to break the proof up into cases using the

first axiom of the usual ordering for real numbers:

Case 1 : a < c¢. This results in z < w.

Case 2 : a = c. Here we are again essentially using the first axiom of the usual ordering for
real numbers. We must have exactly one of the following cases: b < d, b=d, or b > d.
From here, b < d if and only if z < w; b = d if and only if z = w; and b > d if and only

if z > w.
Case 3 : a > c. This results in z > w.

Next we prove the second axiom, which is that for any z,y, w € C,
z<y and y<w = z<w.

For notation, let y = e + fi. Then if z < y we know that either a < e or a = e and b < f.
Likewise, if y < w we know that either e < ¢ or e = ¢ and f < d. This give us four possible

cases to check:

Case 1 : a < eand e < c¢. By the transitive property of the usual ordering for the real numbers,

we then know that a < ¢, which implies that z < w.
Case 2 : a < e and e = ¢. Then a < ¢, which implies that z < w.
Case 3 : a =€ and e < ¢. Then a < ¢, which implies that z < w.

Case 4 : a =e and e = ¢, with b < f and f < d. Then by the transitive property of the usual
ordering for the real numbers, we then know that b < d, which means that a = ¢ and

b < d, so that z < w.

Lastly, in order to show that C doesn’t have the least upper bound property, we need to
find a subset of C that has no least upper bound. There are plenty, but let’s consider the set

A ={z € C|z =a+bi for some a,b € R, and a < 0}.

Assume there is a least upper bound w = ¢+ di. Then if ¢ > 0, we know that 0 + di < w,
and 0+ di is an upper bound for A, contradicting the fact that w is a least upper bound. If
¢ < 0, then ¢/2 + di is a complex number with a negative real part, so ¢/2 4+ di is in A and
c+di < ¢/2+ di, contradicting the fact that w is an upper bound. Therefore ¢ = 0, and thus
w is of the form di for some d € R.

However, for any choice of d € R, the complex number (d — 1)i is an upper bound for A
which is less than di under the order, contradicting the fact that w is a a least upper bound
once again. Hence, A has no least upper bound, and more generally C does not have the

least upper bound property with the order described above.



Problem 5 (WR Ch 1 #17). Prove that
|z +yl* + | — y|* = 2z + 2|y
if z € RF and y € R*. Interpret this geometrically, as a statement about parallelograms.

Solution. Let x = (x1,...,2,) and y = (y1,-..,Yn). Then
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= 2Jz|* + 2Jy[*.
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Interpreted geometrically, the statement simply says that:

The sum of the squares of the diagonals of a parallelogram is equal to twice the

sum of the squares of the sides.



